

1

What’s in this document:

For everyone new to this program: Read page 7, 8 and 9 (upto chapter 4.2) and APPENDIX A and B

The rest of this document is for everyone willing to develop a SiteIni file or simply wants to know more than

the basics.

WebGrab+Plus

(WG++)

SiteIni Development Manual V3.0

Advanced XMLTV EPG Grabber

A program created by:

Jan van Straaten & Francis de Paemeleere

Website: www.webgrabplus.com

(Document revision November 2022, reflects WebGrab+Plus version 3.3 and 5.0)

2

Document author: Jan van Straaten (webgrapp@gmail.com)

Document V3.0 revision 30/11/2022, reflects WebGrab+Plus version 3.3 and 5.0

New in this issue:

w.r.t document V2.2

• APPENDIX C Read-only-elements and chapter 4.5.4 Read_only elements . Added urldate_formatted and

subpage_formatted

• New chapter 4.4.5.3 exe . Describes the option to use an external grabengine

• New General Site dependent elements episodenumberformat , channelnameprefix and securityprotocol in chapter

4.3 General Site dependent data

• The option to add custom cookie using customheader=Cookie in 4.4.1.1

• New implementation of HttpRequest method POS_BACK in 4.4.1.1 and new chapter 5.1.2 How to configure a SiteIni

file for a site using the POST_BACK Http protocol

• HttpRequest method MULTIPART 4.4.1 and New Chapter 5.1.4 How to configure a SiteIni file for a site using the

MULTIPART Http protocol

• Update of Tabel 3 .. new element mdb_episodeabsolute

• Update of chapter 6.4 Series episode details and 6.4.1 MdbIni for series example

• Update of APPENDIX D

w.r.t document V2.1

• Chapter 4.6.2 is completely rewritten and is now called 4.6.2 Conditional operations and arguments

It explains the newly introduced ‘boolean operators’ and RPN style ‘boolean expressions’ in 4.6.2.3 Boolean

Expressions and the new statements ‘if’ and ‘else’ in chapter 4.6.2.4.3 The ‘if’ and ‘if – else’ queries

• New chapter 4.4.1.1.1 Headersets and 4.4.2.3.1 Subpage header list explaining headersets and their allocation to

subpages

• Revised chapter 4.6.4.5.3 Date and time calculations to reflect the changed definition of numeric timespan input

values and the format argument

• Revised chapter 4.6 Operations, details of arguments used in operations moved to the chapters where the

operations are explained for which they are relevant.

• New chapter 4.1.1 SiteIni header

• 3 new readonly elements added in chapter 4.5.4 Read_only elements and APPENDIX C

Please report any omissions, errors or suggestions to webgrabpp@gmail.com or Forums | WebGrab+Plus

mailto:webgrabpp@gmail.com
http://webgrabplus.com/forum

3

Table of Content:
New in this issue: .. 2

Table of Content: .. 3

1.Introduction ... 6

1.1 What it does, features ... 6

1.2 How to run, files and folders ... 6

1.3 Xmltv, Single - versus multiple - value xmltv elements ... 6

2.The grabbing, show update process and update modes ... 7

2.1 The show update process .. 7

2.2 The update modes... 7

2.3 The Grabbed Site pages: index-page, detail-page and sub-detail-page .. 8

3. Configuration files ... 8

3.1 WebGrab++.config.xml .. 8

3.2 MDB.config.xml ... 8

3.3 REX.config.xml ... 8

4. SiteIni file .. 9

4.1 SiteIni file parts .. 9

4.1.1 SiteIni header ... 9

4.2 The SiteIni file basics ... 9

4.2.1 scrubstrings .. 9

4.2.1.1 The 'separator strings' method ... 9

4.2.1.2 The 'regular expression' method ... 10

4.2.2 Element names ... 11

4.2.3 Action specifiers ... 11

4.2.4 Types .. 11

4.2.4.1 type url .. 11

4.2.4.2 types single and multi ... 11

4.2.4.3 type regex .. 12

4.2.5 Arguments .. 13

4.2.5.1 Argument includeblock and excludeblock .. 13

4.2.5.2 Argument separator .. 13

4.2.5.3 Argument max ... 13

4.2.5.4 Arguments include and exclude : ... 14

4.2.5.5 Argument debug ... 15

4.2.5.6 Dedicated Arguments .. 15

4.2.6 String matching / wildcards .. 15

4.2.7 TimeZones .. 15

4.3 General Site dependent data .. 16

4.4 Url builder ... 17

4.4.1 General URL settings .. 17

4.4.1.1 HTTP Headers .. 18

4.4.1.1.1 Headersets.. 19

4

4.4.1.2 (depreciated) argument preload ... 19

4.4.2 url_index... 20

4.4.2.1 urldate format ... 20

4.4.2.2 subpage format ... 21

4.4.2.3.1 Subpage header list .. 21

4.4.2.3 Full examples of the url_index specification ... 21

4.4.3 preload Url’s ... 22

4.4.3.1 (depreciated) preload url for url_index ... 22

4.4.3.2 (depreciated) preload url for index_urlshow .. 22

4.4.4 other url elements .. 22

4.4.4.1 multiple subdetail pages ... 23

4.4.5 the FTP and File protocol.. 23

4.4.5.1 FTP ... 23

4.4.5.2 File ... 23

4.4.5.3 exe ... 23

4.5 Elements .. 23

4.5.1 Non optional elements - elements needed by the program .. 24

4.5.2 Elements that are processed in a special way .. 25

4.5.2.1 Time elements ... 25

4.5.2.1.1 Times from the detail page .. 25

4.5.2.2 The others ... 26

4.5.3 Special elements .. 26

4.5.4 Read_only elements ... 27

4.5.5 XMLTV attributes .. 28

4.6 Operations ... 28

4.6.1 Notes and examples of the effects of modify .. 29

4.6.1.1 The order of the actions and the argument scope. ... 29

4.6.1.2 The use and effect of argument scope .. 30

4.6.1.3 Multiple value elements and modify... 31

4.6.1.4 Expression-1 with indices .. 32

4.6.1.5 Expression-1 with 'regular expressions' .. 33

4.6.2 Conditional operations and arguments .. 34

4.6.2.1 Boolean Entities... 34

4.6.2.2 Boolean Operators .. 35

4.6.2.3 Boolean Expressions .. 35

4.6.2.4 Conditional Queries ... 36

4.6.2.4.1 Pre-Conditional arguments .. 36

4.6.2.4.2 Post-Conditional arguments ... 36

4.6.2.4.3 The ‘if’ and ‘if – else’ queries ... 36

4.6.3 Loops .. 37

4.6.3.1 Conditional loop .. 37

4.6.3.2 Each – loop .. 37

4.6.4 The modify commands ... 38

4.6.4.1 Replace .. 38

5

4.6.4.2 Remove.. 38

4.6.4.3 Substring .. 38

4.6.4.4 Addstart and Addend .. 39

4.6.4.5 Calculate .. 39

4.6.4.5.1 # Count ... 39

4.6.4.5.2 @ Index-of .. 40

4.6.4.5.3 Date and time calculations ... 40

4.6.4.5.4 Bitwise Calculations .. 43

4.6.4.6 Cleanup.. 43

4.6.4.6.1 Cleanup with argument removeduplicates ... 44

4.6.4.6.2 Cleanup with argument tags. ... 44

4.6.4.6.3 Cleanup as string converter .. 45

4.6.4.7 Clear .. 46

4.6.4.8 Select ... 46

4.6.4.9 Sort .. 47

4.6.4.10 Set.. 47

4.6.4.10.1 Set with argument type=run .. 47

4.6.5 Examples of operations .. 48

5. Special Procedures and Tricks .. 48

5.1 Special procedures .. 48

5.1.1 How to configure a SiteIni file for a site using the POST Http protocol ... 48

5.1.2 How to configure a SiteIni file for a site using the POST_BACK Http protocol ... 49

5.1.2.1 (depreciated) How to configure a SiteIni using the previous version of the POST_BACK Http protocol 49

5.1.3 How to configure a SiteIni file for a site using the SOAP http protocol ... 50

5.1.4 How to configure a SiteIni file for a site using the MULTIPART Http protocol ... 51

5.1.5 Using patterns .. 52

5.1.5.1 Date-time patterns .. 52

5.1.5.2 Episode-number patterns.. 52

5.1.6 Adding xmltv attributes .. 54

5.1.6.1 The role attribute of the actor xmltv element .. 54

5.1.6.2 The lang attribute. ... 55

5.1.6.3 The episode system attribute. ... 55

5.1.6.4 Adding more than one attribute to an xmltv element .. 56

5.1.6.5 Overview of supported xmltv attributes ... 56

5.2 Tricks ... 57

6. MDBIni file .. 58

6.1 Introduction .. 58

6.2 MDB Elements ... 58

6.2.1 Variables in URL element values .. 58

6.3 Differences between MDBIni and SiteIni syntax. .. 58

6.3.1 Element prefix .. 58

6.3.2 Argument urlencode ..Error! Bookmark not defined.

6.3.3 MDBini scopes .. 61

6

6.4 Series episode details .. 61

6.4.1 MdbIni for series example .. 62

7. How to develop a new SiteIni file .. 65

7.1 Preparation .. 65

7.2 SiteIniIDE ... 65

7.3 Development steps ... 65

APPENDIX A WebGrab+Plus Features ... 68

APPENDIX B Times, time-zones and DST corrections.. 69

APPENDIX C Read-only elements .. 71

APPENDIX D Site Dependent settings ... 72

APPENDIX E Element names .. 73

WebGrab+Plus , an advanced XMLTV EPG Grabber

1.Introduction
Beside this manual, www.webgrabplus.com/documentation provides additional documentation of various topics not listed

here.

1.1 What it does, features

The program grabs EPG data from TV Guide internet sites and

• runs in WINDOWS, LINUX and OSX and

• can grab from multiple sites in one run, programmable by user through a SiteIni file

• very fast through incremental grabbing (only changed and new shows grabbed)

• programmable through editing commands that enable changing, filtering, adding, moving, removing (parts) and

calculating of the xmltv elements.

• regular updates, support, documentation, user guides and a vast collection of SiteIni files available on

http://www.webgrabplus.com

For a full list of features (see APPENDIX A WebGrab+Plus Features)

1.2 How to run, files and folders
For installation use either the Windows Installation Package or the Linux installation Package . For windows the program will

install on the standard Program Files folder e.g. C:\Program Files (x86)\WebGrab+Plus for a 64 bit computer) (or another

folder as option) and will also create a WebgrabPlus home folder C:\Users\username\AppData\Local\WebGrab+Plus and fills

it with all the necessary files and sub-folders. The program can be run by a double click on the WG++ icon in this

homefolder. This folder also contains a QuickStartGuide. For more details follow the instruction on

documentation/installation/windows

For Linux, follow the instructions in documentation/installation/linux. As with Windows it will create a WebgrabPlus

homefolder with all the necessary files and folders.

The Linux installation Package can also be used for OS-X (documentation/installation/os-x), Raspberry Pi

(documentation/installation/raspberry-pi) and Synology NAS (documentation/installation/synology-nas)

1.3 Xmltv, Single - versus multiple - value xmltv elements

For an overview of the xmltv elements supported see (APPENDIX E Element names), column: xmltv name.

According to the xmltv specification, some elements can have more than one value in the xmltv file. We distinguish single

value xmltv elements (e.g. description) and multiple value xmltv elements (e.g. category, actor). WebGrab+Plus treats them

differently. For examples see (4.2.4 Types)

Note – single value xmltv elements that have a ‘lang’ xmltv attribute (specifying the language in which the content is

presented) (like title, sub-title and desc) will have multiple (separate) xmltv values, one for each different lang attribute

value. Values with the same lang attribute are added together and presented as one xmltv element. See 5.1.5.2 The lang

http://www.webgrabplus.com/
http://www.webgrabplus.com/sites/default/files/download/SW/V2.0.0/WebGrabPlus_V2.0_install.exe
http://www.webgrabplus.com/sites/default/files/download/SW/V2.0.0/WebGrabPlus_V2.0_install.tar.gz
http://webgrabplus.com/documentation/installation/windows
http://webgrabplus.com/documentation/installation/linux
http://www.webgrabplus.com/sites/default/files/download/SW/V2.0.0/WebGrabPlus_V2.0_install.tar.gz
http://webgrabplus.com/documentation/installation/os-x
http://webgrabplus.com/documentation/installation/raspberry-pi
http://webgrabplus.com/documentation/installation/synology-nas

7

attribute. and (4.2.5.6 Dedicated Arguments) argument lang

By definition a single value xmltv element has only one xmltv presentation for each lang attribute value, while a multiple

value xmltv element can have more than one for the same lang attribute value.

1.4 Robots exclusion standard check
A quote from http://www.robotstxt.org/orig.html to explain:

quote/

WWW Robots (also called wanderers or spiders) are programs that traverse many pages in the World Wide Web by

recursively retrieving linked pages. The ‘Robots exclusion standard’ is a common facility the majority of robot authors offer

the WWW community to protect WWW server against unwanted accesses by their robots.

/end quote

Following this definition of www.robots.txt, WebGrab+Plus is such a program. Therefore, it obeys the methods and rules of

this standard in that it displays a warning to the user if a site disallows access to pages that the program wants to grab

from.

2.The grabbing, show update process and update modes
2.1 The show update process

Assuming a previous xmltv listing exist (e.g. of yesterday), the program reads this and stores it as a target for update and

as reference of what shows have to be changed or added. If no xmltv listing exists, the program creates a new one. Before

grabbing show details, the program determines if the existing show in the xmltv listing is still valid or needs an update. For

that it connects to the TV Guide website and grabs the so called index pages (the html pages that contain an overview the

scheduled shows per timespan (e.g. day or several days)). It then compares the shows listed there (channel, start and stop

times and title) with shows in the existing xmltv listing. As a result of this comparison the following situations occur:

• same (.), no update. The show in the index page is considered the same as the one in the existing xmltv listing.

• changed (c), update. The index show is different from the xmltv show but they have overlapping or equal time span.

• gap (g), insert. The index show fits in a time gap of the xmltv listing.

• new (n), add. The index show is new; it will be added to the end (or to the beginning if that is the case) of the xmltv

listing.

• repair (r), update. This is a special situation that occurs if errors or overlapping shows are detected in the xmltv listing.

The program will try to solve this by remove and update.

When the program runs, these resulting situations for each show are printed in the command window like this (the iiii

indicates 4 days of index pages downloaded):

iiii...............g............ccc........c.c.......g....r.....nnnnnnnnnnnnnnnnnnnnnnn

The comparison of the show title in the index page (index_title) and the one in the xmltv file is rather complicated and

tricky. This is due to the fact that the index_title frequently differs from the one in the show detail page to a certain extend.

Differences can be due to abbreviation of long titles, different use of punctuation characters and combination of title with

other elements in the index_title (like category and subtitle). The program deals with all those differences through a

weighted comparison. The result of this comparison is a 'title match factor', which , roughly, is the biggest percentage of

'matching' words between the two titles in any of the elements of the index_title. If this titlematchfactor is less than the

value for it in the SiteIni file (see 4.3 General Site dependent data) the show is considered - not same - and a show

update is started.

For that it will grab the show details from the show detail html page(s) (see 2.3 The Grabbed Site pages) of the TV Guide

website if provided by it.

2.2 The update modes
The program supports a variety of update modes. The preferred and most efficient is :

• 'incremental' (i) Works as described above for all shows in the index page. In this mode the download time is minimized

to the minimum.

• Other update modes are:

• 'light' (l) which is incremental but forces a re-grab of all shows for 'today',

• 'smart' (s) is the same with a forced re-grab for today and tomorrow,

• 'full' (f) not incremental, forces a full re-grab of all days requested.

http://www.robotstxt.org/orig.html

8

Index-only mode:

Besides, and independent from, the modes mentioned above is a special grabbing mode :

• 'index-only' that is automatically selected by the program if no elements need to be scrubbed from the show detail

page. (see also 4.5 Elements) This mode is 'superfast' but seldom useful because most sites provide very little show

data on the index page. But if you are satisfied with just start and stop times and a title it's there. Occasionally there is

a site with richer data on the index page (like tvguide.co.uk). Some sites list only details on the index page or provide

only more detailed information for some shows on detail pages. The program automatically recognizes these cases.

2.3 The Grabbed Site pages: index-page, detail-page and sub-detail-page
As explained in 2.1 The show update process , the program starts with grabbing the index-page to get an overview of the

shows for the time period for which epg data is requested. Depending on the update decision outcome and of the

availability of them, the program grabs detailed show epg data from the show detail html page. Some sites split the epg

data into sub-detail pages. The program supports additional grabbing from one or more of such sub-detail pages. (see 4.5

Elements and APPENDIX E Element names)

3. Configuration files
3.1 WebGrab++.config.xml

This file supplies all TV Guide website independent settings for WebGrab+Plus. Among them are :

• filename , path and name of the xmltv output file

• update , mode as discussed in 2.2 The update modes

• timespan , number of days to grab, (zero based)

and, most important, a

• list of channels to grab. Each channel for which epg data in the xmltv listing is requested needs to be added to this

channel list. The channel data in this list consists of the update mode (see 2.2 The update modes) , the site to get the

data from (see 4. SiteIni file) the site-id (the channel id of the site, see4.4.2 url_index), the xmltv_id (the id by which

xmltv recognises the channel) and the channel display name.

Besides these, several other settings, like mode , postprocess , proxy , user-agent , userkey, logging , credentials , retry ,

skip and channel-grouping.

A typical concept WebGrab++.config.xml file is available athttp://webgrabplus.com/download/utility/documented-

configuration-files. It also provides the explanation of all the settings. The file is self-explanatory. For detailed configuration

instructions see http://www.webgrabplus.com/documentation/configuration

3.2 MDB.config.xml
The MDB postprocessor of WebGrab+Plus, which is available from Version 1.1.0 onwards, automatically adds movie and

serie details from online 'MDB' sites (e.g. IMDb.com) to the xmltv file created by the basic WebGrab+Plus EPG frontend

grabber. It has its own configuration file which resides in the subfolder \mdb of program’s home-folder. This mdb.config.xml

file also serves as the mdb configuration user guide. An example of it is also available at

http://webgrabplus.com/download/utility/documented-configuration-files For detailed configuration instructions see

http://www.webgrabplus.com/documentation/configuration-mdb

3.3 REX.config.xml
The purpose of this postprocessor is to re-arrange and edit the xmltv file created by the grabber section of WebGrab+Plus.

This can be useful or necessary if the EPG viewer of the PVR/Media-Centre used, or the xmltv importer it uses, does not

support all the xmltv elements in the xmltv file created by WG++.

It can:

• Move the content of xmltv elements to other xmltv elements

• Merge the content of several xmltv elements

• Add comments/prefix/postfix text

• Remove or create xmltv elements

• Do some cleanup operations and element content limitations

E.g.: If the PVR doesn't support import of credit elements (actors, directors etc.) it can add the content of them to the

description and remove the original credit elements which are useless. Furthermore, it can move the episode data to the

beginning or end of the subtitle element- Etc. ..

It has its own configuration file which resides in the subfolder \rex of program's home-folder. This rex.config.xml file also

serves as the rex configuration user guide. An example of it is also available at

http://webgrabplus.com/download/utility/documented-configuration-files , mdb.config.xml

http://webgrabplus.com/download/utility/documented-configuration-files
http://webgrabplus.com/download/utility/documented-configuration-files
http://www.webgrabplus.com/documentation/configuration
http://webgrabplus.com/download/utility/documented-configuration-files
http://www.webgrabplus.com/documentation/configuration-mdb
http://webgrabplus.com/download/utility/documented-configuration-files

9

4. SiteIni file
For each TV Guide website that is entered in the channel list of the config file (see above) a SiteIni file is required to supply

WebGrab+Plus with site dependent settings. The name of this file is directly related to the value of the site attribute in the

channel list through the addition of .ini to this value. (e.g. channel list site attribute: tvgids.nl .. SiteIni file name :

tvgids.nl.ini)

4.1 SiteIni file parts
The data in this file consists of the following parts:

• A top header section that contains meta data like the site, the required WG++ version, revision number, date and

author and eventual remarks. (see 4.1.1)

• General Site dependent data (see 4.3)

• Data that WebGrab+Plus needs to compose the url's to download pages (see 4.4 Url builder)

• Data that WebGrab+Plus needs to scrub xmltv elements from the downloaded pages (see 4.5 Elements)

• Optional data that allows post modification of the scrubbed xmltv elements (see 4.6 Operations)

• A channel file creation part (see 4.5.3 channellist)

4.1.1 SiteIni header
Eexample:

**--

* @header_start

* WebGrab+Plus ini for grabbing EPG data from TvGuide websites

* @Site: jjtvn.ir

* @MinSWversion: V2.0

* @Revision 0 - [21/08/2018] Blackbear199

* - creation

* @Remarks:

* @header_end

**--

This header section is important because its data is used in the program (e.g. the @MinSWversion and the @Revision

number) as well as while importing the SiteIni into the SiteIni database @ http://webgrabplus.com/epg-channels.

Improper syntax will cause failures to function or at least warnings.

Syntax:

• The required meta data starts with * @ :

o * @header_start Important start-mark for the program and the SiteIni DB

o * @Site: The site name from which the epg data collected

o * @MinSWversion: The lowest version number for which the siteini functions, e.g. V2.1.9

o * @Revision Must follow this syntax:

 * @Revision revision-number – [dd/MM/yyyy] creators/revisionist name

o * @Remarks: Any remarks here will be shown in the SiteIni database

o * @header_end Important end-mark for the program and the SiteIni DB

• The starting and final line **---------------------------------

4.2 The SiteIni file basics

4.2.1 scrubstrings
A scrubstring is just one line in the SiteIni that specifies an action for a SiteIni element. The general format is

Elementname.action {type(arguments)|datastrings required for the action}
Most of the settings in this file relate to how WebGrab+Plus extracts, "scrubs", xmltv elements from the TV Guide website

html pages. The program supports two methods for that: The ‘separator strings method’ (described in 4.2.1.1), by means of

element separator strings pointing to the start and end of the element to be scrubbed and the ‘regular expression method’

(described in 4.2.1.2), by which the element to be scrubbed is extracted by means of a ‘regular expression’.

Both methods can be used together mixed in one SiteIni file and both cover more or less the same functionality. The

‘separator strings method’ is the easiest to understand and is recommended if not familiar with ‘regular expressions’. The

‘regular expression method’ can be considered as the ‘expert’ method and is extremely powerful and compact.

4.2.1.1 The 'separator strings' method

For that it uses (up to) 4 strings that should point to the beginning and the end of the element to scrub:

http://webgrabplus.com/epg-channels

10

• the element start es and the element end' ee string.

They represent the unique strings (e.g. html tags or parts of it) between which required the element is always located

on the html page. In most cases such unique es and ee are unavailable because somewhere else in the html page the

same strings exist enclosing other data. In that case we need to separate the right es and ee pairs from the unwanted

pairs.

For that we use the block separators:

• block start bs and block end be .

These should enclose a html region (block) in which es and ee enclose our wanted element and nothing else.

Consider the following sample html:

 <div id = "detail-page">

 <div id = "program-content">

 <div id = "program-info">

 <h3>Basilisk: Serpent King</h3>

 RTL 7

 <div id = "program-desc-text">

 Amerikaanse actiefilm. Een team van archeologen ontwaakt een mythische slang die vernieling zaait. De enige

manier om het wezen te stoppen is door een magische scepter te vinden.

 </div>

 <!-- Genre Subgenre Data -->

 <dl>

 <dt>Genre:</dt><dd>speelfilm</dd>

 <dt>Genre:</dt><dd>sequel</dd>

 <dt>Subgenre:</dt><dd>avontuur</dd>

<dt>Duur:</dt><dd>90 min</dd>

<dt>Regie:</dt><dd>Louie Myman</dd>

<dt>Met:</dt><dd>Jeremy London, Wendy Carter, Griff Furst, Cleavant Derricks, Daniel Ponsky, Bashar Rahal</dd>

 </dl>

To scrub the title - Basilisk: Serpent King- we need es= <h3> and ee= </h3>. In fact if it is sure that <h3> tag is uniquely

used to enclose the title we wouldn't need more than that. However even if that is the case on this (part of) html page,

simple html tags like <h3> are seldom unique and thus it is more secure to use the block separators bs= <div id =

"program-info"> and be = <a class

It is a little different with the description, here es= <div id = "program-desc-text"> and ee= </div> . Very likely this es is

unique for the description, so we wouldn't need block separators.

Strings like bs, es, ee and be will be called separatorstrings in the remainder of this document.

The syntax in which the SiteIni file expects them is :

{type(optional arguments)|bs|optional es|ee|optional be}
or:

{type(optional arguments)|bs|optional es|optional ee|be}
To complete a SiteIni scrubstring we need to add the xmltv element name and an action specifier :

ElementName.ActionSpecifier {type(optional arguments)|separatorstrings}
The scrubstrings for two scrubstrings from above for description and title respectively:

description.scrub {single|<div id = "program-desc-text">||</div}

title.scrub {single|<div id = "program-info">|<h3>|</h3>|<a class}

4.2.1.2 The 'regular expression' method

Most of the functionality to extract selected EPG data from the pages received from the TV Guide sites is covered by the

‘separator string’ method described in the previous chapter. Besides that the program offers the ‘regex’ method.

This method is very powerful and flexible but requires detailed understanding of the Regular Expression syntax. Therefore,

it is only recommended for experienced SiteIni designers with this knowledge or the determination to delve into it. As

introduction a quote from Wikipedia, http://en.wikipedia.org/wiki/Regular_expression :

quote/

...... a regular expression (abbreviated regex or regexp) is a sequence of characters that forms a search pattern,

mainly for use in pattern matching with strings, or string matching, i.e. "find and replace"-like operations.

/end quote

The program supports the use of these 'regex' as an alternative for the ‘separator strings method ' described in 4.2.1.1

http://en.wikipedia.org/wiki/Regular_expression

11

More information about regular expressions in general, besides the Wikipedia article, can be found in http://www.regular-

expressions.info/tutorial.html and numerous other articles in the www domain.

The program uses the .NET regular expressions library as documented in http://msdn.microsoft.com/en-

us/library/hs600312.aspx

The detailed description of the syntax and use of this extraction method is found in chapter 4.2.4.3 type regex.

4.2.2 Element names
In this document, an element is defined as a named string object or an array of them in which the result of an action

(scrub, modify etc. see 4.2.3 Action specifiers) is stored. Their name consists of a fixed part (see APPENDIX E Element

names, first column) that describes the type of data it contains — and, in most cases, a prefix that indicates from which of

the html pages (see 2.3 The Grabbed Site pages) its data is obtained.

A complete list of supported elements can be found in APPENDIX E, first column, SiteIni name.

Elements with a prefix index_ are scrubbed from the index page, the ones with prefix detail_ or without a prefix from the

show detail page and the ones with prefix subdetail_ from the sub-detail page. Notice that most elements can be scrubbed

from either of the three possible html pages. This depends on the actual content of these pages. It is allowed to have an

element scrubbed from more than one page, in that case the scrubbed values will be added in a way which depends on if

the element is a multiple value xmltv element or not. (see 1.3 and 4.2.4). In the case of a multiple value element they will

be listed as separate elements, while in the case of a single value element, the values are merged.

The obligatory elements (un-checked optional column in APPENDIX E) are either required for proper functioning of the

program (url_index and urldate to connect to the site, index_showsplit to separate the show index parts, index_start and

index_title for update decision making) or as a minimum for a meaningful xmltv output (index_start and title or index_title).

4.2.3 Action specifiers
Action specifiers are either url (optional), headers, format, scrub or modify. They specify what kind of action the program

has to perform. See APPENDIX E , column 'action' for an overview.

4.2.4 Types
Type is url, single, multi or regex

4.2.4.1 type url
Scrubstring specifications for this type have varying formats to build the url's to connect to the various site pages. (see 4.4

Url builder)

4.2.4.2 types single and multi
Very often elements in html pages are divided in several paragraphs or otherwise split into parts such that no single pair of

element separators (es and ee) enclose the element.

Suppose the description in the html page looks like this:

 <div id = "program-desc-text">

 <p>Amerikaanse actiefilm.</p>

 <p>Een team van archeologen ontwaakt een mythische slang die vernieling zaait. De enige manier om het wezen te

stoppen is door een magische scepter te vinden.</p>

 <p>Geproduceerd in 1998</p>

 </div>

In such a case we use type multi to instruct WebGrab+Plus to scrub all the elements within the block with the specified

separatorstrings, like here es = <p> and ee = </p>

To illustrate the scrub results from this html with type single:

description.scrub {single|<div id = "program-desc-text">|<p>|</p>|</div} will result in :

 <desc lang="xx">Amerikaanse actiefilm.</desc>

While the same with type multi :

description.scrub {multi|<div id = "program-desc-text">|<p>|</p>|</div} will result in :

 <desc lang="xx">Amerikaanse actiefilm. Een team van archeologen ontwaakt een mythische slang die vernieling

zaait. De enige manier om het wezen te stoppen is door een magische scepter te vinden. Geproduceerd in 1998</desc>

Notice that WebGrab+Plus adds the three description paragraphs together. This is due to the fact that the element

description is a single value xmltv element. (see 1.3 and 4.2.2)

To illustrate what happens with a multiple value xmltv elements, consider the category.

In the html the genre and subgenre are the obvious choice for that. Xmltv doesn't specify a subgenre element, so we take

them all together as category

http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
http://msdn.microsoft.com/en-us/library/hs600312.aspx
http://msdn.microsoft.com/en-us/library/hs600312.aspx

12

 <!-- Genre Subgenre Data -->

 <dl>

 <dt>Genre:</dt><dd>speelfilm</dd>

 <dt>Genre:</dt><dd>sequel</dd>

 <dt>Subgenre:</dt><dd>avontuur</dd>

<dt>Duur:</dt><dd>90 min</dd> </dl>

There are two genre entries in the html, with the same element separators, so we use type multi to grab them both.

category.scrub {multi|<!-- Genre Subgenre Data -->|<dt>Genre:</dt><dd>|</dd>|</dl>}

The result will be the following xmltv listing for category:

 <category lang="xx">speelfilm</category>

 <category lang="xx">sequel</category>

Because category is a multiple value xmltv element the two are not joined to one xmltv element but listed as separate

category elements.

To add the third category element , the Subgenre in the html, we use another feature of the SiteIni specification : For most

SiteIni elements it is allowed to use more than just one scrubstring for the same xmltv element! (see APPENDIX E, column -

multiple scrub- for which this is allowed)

So we add:

category.scrub {single|<!-- Genre Subgenre Data -->|<dt>Subgenre:</dt><dd>|</dd>|</dl>}

The final result:

 <category lang="xx">speelfilm</category>

 <category lang="xx">sequel</category>

 <category lang="xx">avontuur</category>

4.2.4.3 type regex

Used to specify the ‘regex’ method of data extraction. See also 4.2.1.2 for some background information. This method

doesn’t need the type single and multi distinction as is explained below.

The syntax:

Element.scrub {regex(optional argument)||regular expression||}
• regex : the action specifier for this method

• argument : for this method the only arguments supported are debug 4.2.5.5 and pattern 4.2.5.6

• regular expression: The regular expression that matches the desired element content.

• The place of the regular expression in the scrubstring is the same as the 'element start - es' in the separator string

method (see 4.2.1.1, syntax) or, simply put: two || in front and two || after it.

The easiest way to get started with this method (after mastering the ‘separator string’ method) is to use a direct

substitution of the separator strings be, es, ee and be used there.

Remember the syntax for the separator string method (see 4.2.4.2 type single and multi explanation)

For type single:

Element.scrub {single (arguments)|bs|es|ee|be}
A direct ‘regex’ substitute for it will be:

Element.scrub {regex (arguments)||bs(?:.*)es(.*?)ee(?:.*?)be||}
Examples: The ‘separator string method’ title solution of the previous chapter:

title.scrub {single|<div id = "program-info">|<h3>|</h3>|<a class}

can also be achieved with the following regex scrubstring:

title.scrub {regex||<div id = "program-info">(?:.*)<h3>(.*?)</h3>(?:.*?)<a class||}

And for the description :

description.scrub {single|<div id = "program-desc-text">||</div>}

description.scrub {regex||<div id = "program-desc-text">(.*?)</div>||}

For type multi the substitution is as follows:

Element.scrub {multi(arguments)|bs|es|ee|be}
Will look like this in regex:

Element.scrub {regex(arguments)||bs(?:.*)(?:es(.*?)ee(?:.*?))*be||}
Example the category of chapter 4.2.4.2

category.scrub {multi|<!-- Genre Subgenre Data -->|<dt>Genre:</dt><dd>|</dd>|</dl>}

category.scrub {regex||<!-- Genre Subgenre Data -->(?:.*?)(?:<dt>Genre:</dt><dd>(.*?)</dd>(?:.*?))*</dl>||}

13

4.2.5 Arguments
Arguments can be either/and includeblock, excludeblock, separator, max, include, exclude, debug

and dedicated arguments lang, force, pattern, sort, timespan, preload, alloc, target.

!! All these arguments are irrelevant for type regex, with the exception of debug and pattern !

4.2.5.1 Argument includeblock and excludeblock

If it is only possible to find blocks that, apart from the required information, contain unwanted information with the same

separatorstrings es and ee , these arguments can be used to select the correct blocks. The syntax:

includeblock=bn1,bn2, .. ,bnn/tn -or- "string-1""string-2" .. "string-n"
excludeblock=bn1,bn2, .. ,bnn/tn -or- "string-1""string-2" .. "string-n"

• bn , the block number to include or exclude, starting with 1

• tn , the number of blocks for which the block numbers bn repeat

• "string" , include or exclude only the blocks that contain the "string". When more than one "string" is entered, the block

selection is done by an 'or' function of the strings. The use of wildcards [x] and [?] is allowed (see 4.2.6 String

matching / wildcards)

Example : includeblock="abc""def" , the blocks included contain the string "abc" or "def" .

When more than one "string" is entered separated by the char & , the block selection is done by an 'and' function.

Example : includeblock="abc"&"def" , the blocks included contain the string "abc" and "def".

• All characters are allowed.

• The characters " ' { and) need to be preceded by \ . So the string ("O'Neil {superhero}") must be entered as

"\(\"O\'Neil \{superhero}\"\)"

4.2.5.2 Argument separator
As example take a look at the actors :

<dt>Regie:</dt><dd>Louie Myman</dd>

<dt>Met:</dt><dd>Jeremy London, Wendy Carter, Griff Furst, Cleavant Derricks, Daniel Ponsky, Bashar Rahal</dd>

 </dl>

If we use : actor.scrub {single|<dt>Met:</dt>|<dd>|</dd>|</dl>} the xmltv listing of actor will be

 <actor>Jeremy London, Wendy Carter, Griff Furst, Cleavant Derricks, Daniel Ponsky, Bashar Rahal</actor>

That is clearly not what we want. To separate them we use the separator argument. It specifies which string or strings

separates the elements. Its syntax is:

separator="string-1" "string-2" .. "string-n"
• Between the separator strings a space is allowed but not required.

• All characters are allowed with the exception of | (vertical line). This is no limitation of this function because the

program will automatically replace all | characters in the html page into the character combination !?!?!, this to avoid

problems with the special function of this character.

• The characters " ' { and) need to be preceeded by \ So the string ("O'Neil") must be entered as

separator="\(\"O\'Neil\")"

The scrubstring for actor then becomes:

actor.scrub {single(separator=", ")|<dt>Met:</dt>|<dd>|</dd>|</dl>}

and the resulting xmltv listing:

 <actor>Jeremy London</actor>

 <actor>Wendy Carter</actor>

 <actor>Griff Furst</actor>

 <actor>Cleavant Derricks</actor>

 <actor>Daniel Ponsky</actor>

 <actor>Bashar Rahal</actor>

Suppose the html line with the actors looked like this:

<dt>Met:</dt><dd>Jeremy London, Wendy Carter, Griff Furst, Cleavant Derricks, Daniel Ponsky and Bashar Rahal</dd>

(The last two actors separated by the word - and -) We then can use separator=", " " and " for the same result.

4.2.5.3 Argument max

To limit the number of elements (either added together in the case of single value xmltv elements or listed separately in the

case of multiple value xmltv elements) we can use the argument max. Its syntax:

max=n
in which n=positive integer

actor.scrub {single(separator=", " max=3)|<dt>Met:</dt>|<dd>|</dd>|</dl>} will result in:

14

 <actor>Jeremy London</actor>

 <actor>Wendy Carter</actor>

 <actor>Griff Furst</actor>

4.2.5.4 Arguments include and exclude :

These allow further control over which of the scrubbed elements will be passed to the final result. It is important to realise

that both include and exclude can be used together in one scrubstring. The program will execute these in the order in which

they occur in this specification. See for an example of the effect of this in 5.2 Tricks

Its syntax:

include=n -or- first -or- firstn -or- last -or- lastn -or- "string"
exclude=n -or- first -or- firstn -or- last -or- lastn -or- "string"

• n the element number to include or exclude, starting with 1

• first or firstn (like first2) , the first or the first n elements to include or exclude

• last or lastn (like last2) , the last or the last n elements to include or exclude

• "string" , like "met o.m.", include or exclude only elements containing the "string". The use of wildcards [x] and [?]

(see 4.2.6) is supported.

• All characters are allowed with the exception of | (vertical line). This is no limitation of this function because the

program will automatically replace all | characters in the html page into the character combination !?!?! , this to avoid

problems with the special function of this character.

• The characters " ' { and) need to be preceded by \ So the string ("O'Neil") must be entered as "\(\"O\'Neil\")"

• As with the argument separator (see 4.2.5.2) a list of strings is allowed like:

 include="string-1" "string-2" .. "string-n"
The effect of these arguments differs depending on whether it is entered in - combination and after the argument separator

— (case A) or not (case B).

• Case A (after the argument separator):

In this case it allows to make a selection of the elements we want after they are separated.

As example we use the following html for a title and sub-title combination that occurs frequently:

 <div class="intro-datasheet">

 <div class="img">

 <p>Motociclismo: Cto. del Mundo</p>

 </div>

Here, the title Motociclismo, is separated from the sub-title Cto. del Mundo with a : character.

So we can use the arguments separator=": " to separate them , we then use include=first for the title and

exclude=first for the sub-title, like this:

title.scrub {single(separator=": " include=first)|<div class="intro-datasheet">|<p>|</p>|</div>}

subtitle.scrub {single(separator=": " exclude=first)|<div class="intro-datasheet">|<p>|</p>|</div>}

The xmltv result :

 <title lang="es">Motociclismo</title>

 <sub-title lang="es">Cto. del Mundo</sub-title>

• Case B (not after the argument separator):

The program will evaluate all the scrubbed elements (single or multi) on the conditions specified by the include and/or

exclude values.

As example we use the description again:

 <div id = "program-desc-text">

 <p>Amerikaanse actiefilm.</p>

 <p>Een team van archeologen ontwaakt een mythische slang die vernieling zaait. De enige manier om het

wezen te stoppen is door een magische scepter te vinden.</p>

 <p>Geproduceerd in 1998</p>

 </div>

Remember the original scrubstring:

description.scrub {multi|<div id = "program-desc-text">|<p>|</p>|</div} resulted in :

 <desc lang="xx">Amerikaanse actiefilm. Een team van archeologen ontwaakt een mythische slang die vernieling

zaait. De enige manier om het wezen te stoppen is door een magische scepter te vinden. Geproduceerd in

1998</desc>

15

But, the last element - Geproduceerd in 1998 - actually belongs to another xmltv element - date - which is meant to

contain the date of production. So in fact it shouldn't be part of the description. We can use the following to exclude it

from the description:

description.scrub {multi(exclude="Geproduceerd")|<div id = "program-desc-text">|<p>|</p>|</div}

or if we are sure that it is always the last element that contains the production date:

description.scrub {multi(exclude=last)|<div id = "program-desc-text">|<p>|</p>|</div}

or if it is always the third:

description.scrub {multi(exclude=3)|<div id = "program-desc-text">|<p>|</p>|</div}

or

description.scrub {multi(include=first2)|<div id = "program-desc-text">|<p>|</p>|</div}

Even this works!

productiondate.scrub {multi(include="Geproduceerd")|<div id = "program-desc-text">|<p>|</p>|</div} or

productiondate.scrub {single|<div id = "program-desc-text">|Geproduceerd|</p>|</div} both will result in:

 <date>1998</date>

(this works because WebGrab+Plus finds any year value inside an element for the date xmltv element, see 4.5.2.2)

4.2.5.5 Argument debug

Adding the word debug as argument will start logging of the scrubbing process for the element in the WebGrab++.log.txt

file. The html page from which the scrubbing is attempted is written to a separate file html.source.htm. One should use

this argument (preferably) for one element and one show at the time, otherwise the results could be confusing. The config

file allows to Grab only one show with the -timespan- setting. Another way to reduce the debug logging to one show is to

add an index number n, like debug.4 , in this way only the 4th show from the index page will be logged.

4.2.5.6 Dedicated Arguments

The following arguments are dedicated to the use with a certain element

• lang : This argument only works for the element titleoriginal. See 4.5.2.2, titleoriginal.

• force : This is a special argument to change the effect of scrubbing the element index_date (see 4.5.2.1)

• sort and timespan : Arguments to be used together with index_showsplit in case of fragmented multiday index_pages

(see 4.5.1 Non optional elements)

• preload : Used together with any of the 3 url elements (see APPENDIX E and 4.4 Url builder) Can be used to specify an

url that is preloaded before the actual url that calls the requested html page.

• alloc : Can be used in the special elements index_site_id and index_site_channel to specify the target xmltv elements.

See 4.5.3 Special elements

• target : Must be used together with the special element sort_by which holds the data by which a target multi value

element will be sorted with the command sort (see 4.5.3 Special elements and 4.6.4.9 Sort)

• pattern : Can be used to specify a non standard date/time pattern for the elements start and stop. (See 4.5.2.1 Time

elements)

4.2.6 String matching / wildcards
The arguments includeblock, excludeblock, include and exclude , as described in 4.2.5 Arguments one can use strings to

match with data in the elements. Normally the program uses a one-to-one-case-sensitive match. It is possible however to

use ‘wildcards’ in the strings to match. Wildcard syntax :

[x] represents a multiple character wildcard
[?] represents a single character wildcard

Examples:

• "a[*]c" matches with "abc" and "avdgec" etc.

• "a[?]c" matches with "abc" and "ahc" etc.

Wildcards can also be used in conditional arguments (see 4.6.2)

4.2.7 TimeZones
Read (APPENDIX B Times, time-zones and DST corrections) first!

For the calculation of the xmltv start and stop times, the program needs the time zone and the daylight-saving-time (dst)

rules applicable for that time zone. This must be entered by means of a timezone_id in the time zone parameter of the

General Site dependent data (see timezone). The syntax :

timezone=timezone_id
• timezone_id, e.g US/Eastern or Europe/Brussels or Asia/Singapore or UTC-05:00 or UTC

The program contains an integrated time zones database of more than 400 of such timezone_id’s together with their

dst rules which is based on tzdata as distributed by http://www.iana.org/time-zones.

Entering timezone=? will list all the available timezone_id’s together with their basic utc offset in the logfile. This to

http://www.iana.org/time-zones

16

facilitate the choice. As the examples illustrate, it is also possible to enter just the UTC offset, like UTC-05:00, the

program will map this offset to the most likely timezone_id. Just entering UTC without the offset is a special case to be

used if the guide times are listed in UTC , without dst rules. (this is not the same as UTC+00:00 !!)

• For the processing of the time zone database the program uses a customized version of the public domain ZoneInfo Api

developed by Mark Rodrigues as published @

 http://www.codeproject.com/Articles/25001/ZoneInfo-tz-Database-Olson-Database-NET-API

• Timezones database updates : As this database is integrated into the program, updates, if necessary, will be provided

by a program update published on www.webgrabplus.com. It is also possible to place an updated version of this

database in the same folder as the executable WebGrab+Plus.exe.

The program accepts two variants of this database, as TimezonesData.txt, a single file variant provided by the

www.webgrabplus.com in the download section —or– as a folder tzdata as provided by http://www.iana.org/time-zones

In both cases the program will use the external database instead of the integrated one.

4.3 General Site dependent data

One or more lines with the following syntax:

site {url=x.x|timezone=tz-id|maxdays=n.p|cultureinfo=xx-XX|
charset=xxx,yyy|titlematchfactor=nn}

and the following (and more) are optional:

site {ratingsystem=xxx|episodesystem=xxx|grabengine=wget|
firstshow=n|firstday=nnnnnnn|subtitlestype=xxx|retry=xxx}

Site dependent data can be entered on one or more lines starting with the word 'site'

• url, e.g. url=tvgids.nl , the url of the site e.g. url=tvgids.nl

• timezone, e.g. US/Eastern or UTC+01:00, the timezone for which the TV guide data is given. See 4.2.7 TimeZones for

details.

• maxdays, specifies the number of days n for which TV guide data is provided by the site, followed by how many index

pages p is used for it. If n and p are equal, e.g. 7 days on 7 pages, you can either specify 7.7 or just 7. However, if the

site has a multiday e.g. a weekly index_page 7.1 must be specified. (See also 4.5.1, index_showsplit)

• cultureinfo, e.g. cultureinfo=nl-NL , gives data about standards for time and language formats used by the site. For

more info : http://msdn.microsoft.com/en-us/library/system.globalization.cultureinfo(v=VS.95).aspx

It is allowed to only specify the language part of it, like cultereinfo=en , but the results might be different, especially in

country specific items like time formats.

• charset, e.g. charset=ISO-8859-1 or UTF-8. Charset is normally found somewhere at the beginning of the grabbed site

page. Sets proper decoding of these pages. This charset is applied to all grabbed html pages (index, show-detail and

sub-detail). Sometimes the charset for these pages is different. In that case specify them separately, separated by a

comma. The first will be used for the index page the second for the show-detail and the sub-detail page.

• titlematchfactor, e.g. titlematchfactor=50 , this is a number from 0 to 100 that specifies how strict the title comparison

is done by WebGrab+Plus (as discussed in 2.1 The show update process). Some sites use different show titles for the

index pages and show detail page. Start with a high value e.g. 90 and adjust to lower if too many unnecessary show

updates occur. (see also 4.5.1, element index_title). A value of 0 disables title comparison.

• ratingsystem (optional) Specifies the system attribute of the xmltv element rating. Some countries have a uniform

system to classify shows (e.g. the MPAA in the US and KIJKWIJZER in the Netherlands). If the site's country has no

such system it is best to use a two-letter country spec like ES for Spain.

• episodesystem (optional), specifies the xml attribute system of the episode-num xmltv element. See xmltv specification

for details XMLTV.DTD . The most common values are xmltv_ns and onscreen.

• episodenumberformat (optional), overrules the default episodenumberformat D , allowed values D, D1 and D2

• grabengine Offers the option to select one of the experimental grabengines . Default httpclient .. Development only

• firstshow (optional). Specifies which is the first show on the index_page that will be processed (scrubbed). When not

specified, or if firstshow=0, it starts with the first show found on the index_page. This value is important for sites that

lists shows on the index_page from the previous day 'yesterday', because the program assumes that the first show is of

'today' if there is no date component in the times listed. A mix-up of the date value will be the result. The firstshow

value allows to skip these 'yesterdays' shows. Instead of a number, the string now can be used. This will skip all shows

until a day change (passing midnight) is detected.

• firstday (optional), e.g. firstday=0123456 This is to be used if the site has a multiday index page (an overview of shows

for several days). When in such a case, this index_page doesn’t change for several days (remains starting on the same

day), the program needs info where to start. The firstday value tells the program how many days to skip to find the

shows of ‘today’. It needs to be entered as 7 numbers, from the first : days to skip on Monday .. To the last : days to

http://www.codeproject.com/Articles/25001/ZoneInfo-tz-Database-Olson-Database-NET-API
file://///Diskstation/Diskstation/WebGrabPlus/Documentation/www.webgrabplus.com
file://///Diskstation/Diskstation/WebGrabPlus/Documentation/www.webgrabplus.com
http://www.iana.org/time-zones
http://msdn.microsoft.com/en-us/library/system.globalization.cultureinfo(v=VS.95).aspx
http://xml.coverpages.org/XMLTV-DTD-20021210.html

17

skip on Sunday. Example:

Suppose a multiday index_page which lists the shows for a week starting Sunday. Then, if we grab on Sunday, there is

no need to skip a day, but on Monday we must skip 1 day (the Sunday), on Tuesday we must skip 2 days ... Etc. We

specify firstday=1234560

• subtitlestype (optional). Specifies the xmltv attribute type of the element subtitles. Possible standard values are teletext,

onscreen and deaf-signed.

• retry (optional). This is the same retry setting as the general retry setting in the config file as mentioned in 3.1. If a site

is markedly slower than others used in the same run, it is possible to set different retry, timeout and delay values for

that site here. The syntax is the same as in the config file. E.g. retry=<retry>12</retry> or

retry=<retry time-out="10" channel-delay="5" index-delay="1" show-delay="1">4</retry>

• keeptabs (optional) This will disable the default replacement of tab \t characters in spaces in html pages. In some cases

tabs can be useful in scrubstrings.

• keepindexpage (optional) Saves the index-page for use with other channels of the same site. Useful when a site list all

or a group of channels on one index-page. It saves grabbing the same index-page again and again.

• loadcookie (optional) If a site requires a login with username and stores your personal settings in a cookie, it is

necessary to load this cookie into WG++ for it to send to this site as part of the WebRequest. Specified as

loadcookie=cookie-file-name. The cookie-file-name is the name of the cookie file which must be present in the

WebGrab home folder. (see loadcookie.txt on the download page for how to create such a file ,

http://www.webgrabplus.com/sites/default/files/download/documentation/Set%20of%20help%20files/help-files.zip).

The program filters the cookies in this cookie-file for the cookies relevant for the site, using the url (see above) as

domain. Optionally the cookie-file-name can be followed by additional domain strings that specify which of the cookies

for other domains will be kept. Example : site{loadcookie=yourtv.com.au.cookie.txt} or

site{loadcookie=yourtv.com.au.cookie.txt,yahoo.com}

• skip (optional) Can be added if a site needs a different (than the one in the config file) setting for any of the values of

skip. It overrules the config setting. It must be specified using the same syntax as required for the config file.

E.g. skip=<skip>16,1</skip>

• compression (optional) The program is able to decompress compressed site responses. Specifying a value for

compression like gzip or deflate will invite the site (by means of the http header Accept-Encoding) to use compression.

If a compressed response is the result, the program will automatically enable decompression. If no value is entered for

compression the header Accept-Encoding will not be issued.

• nopageoverlaps (optional) If subsequent index pages have no overlapping index shows, this setting can be used to

disable the automatic removal of these duplicates. This automatic removal can cause problems when channels have few

shows per day and/or long gabs in the programming.

• allowlastdayoverflow (optional) When the last shows on the index page are in fact shows from the following day,

specifying this will grab these shows even when outside the range of the <timespan> setting in the config file.

• langoverrule (optional) Its value will overrule the language component of cultureinfo as default lang xmltv attribute.

E.g. langoverrule=fr

• channelnameprefix (optional)(only Versions 4.2.4.6 and higher !!) Specifies a prefix string of the xmltv_id that will be

added during channellist file creation . E.g. channelnameprefix=telekom.sk

• securityprotocol (optional) Forces a specific security protocol for communication with the server. (the program offers

the choice to the server by default) Possible values tls, tls11, tls12, tls13 and default

Examples:

site {url=tvgids.nl|timezone=Europe/London|maxdays=6|cultureinfo=en-US|charset=ISO-8859-1,UTF-8}

site {titlematchfactor=90|firstshow=5}

site {ratingsystem=KIJKWIJZER|episodesystem=xmltv-ns|retry=<retry time-out="15">10</retry>|keeptabs}

site {keepindexpage|loadcookie=yelo.be.cookies,yahoo.com|skip=<skip>noskip</skip>}

site {compression=gzip|nopageoverlaps|allowlastpageoverflow|langoverrule=zh}

4.4 Url builder
Data that WebGrab+Plus needs to compose the url's to download pages

4.4.1 General URL settings
Most of the TV Guide websites use the HTTP or HTTPS protocol. The following chapters describe the setup for this protocol.

Beside that the program supports the FTP and the File protocol. These are described briefly in 4.4.4 the FTP and File

protocol

http://www.webgrabplus.com/sites/default/files/download/documentation/Set%20of%20help%20files/help-files.zip

18

4.4.1.1 HTTP Headers

To specify the http request headers that are needed to get the expected response

Http Request methods :

The program supports the following Http Request methods:

• Method GET: The default way (method) to get a response from a site for a specific html page is to do a ‘GET’

Http request for the url of that page. The URL contains all the necessary details to specify the requested content,

usually in the form of a channel and a date variable.

• Method POST (see 5.1.1 for more details): A common alternative way (method) is to do a ’POST’ Http request to a

specific url which is accompanied by a header ‘postdata’ with a string which further specifies the request.

• Method POST_BACK (see 5.1.2 for more details): This is a method that performs two Http Requests, which each have

their own method, either GET or POST. The response from the first request provides request data for the second, either

in the form of response cookies, postdata, header or url components.

(This variant of POST_BACK replaces the one that was described in earlier versions of this document, although that

previous variant can still be used. See 5.1.2.1. It also replaces the preload option (4.4.1.2 and 4.4.3). The same

functionality and more can be obtained this version of POST_BACK)

• Method SOAP (Simple Object Access Protocol) (see 5.1.3 for more details): Another rare variant of the POST method.

In this variant, the details of the request are not sent to the site by means of the ‘postdata’ header but by means of an

xml file containing the soapEnvelope.

• Method MULTIPART Basically a POST method by which a number of request data elements in the ‘postdata’ is

separated by ‘boundaries’ that are randomly created by the http multipart protocol. (See 5.1.4 for how to configure it)

To specify which of these methods is to be used the action specifier headers must be used. Besides method, a number

of other headers can be set in this manner.

The syntax:

urlname.headers {headername=string|…|headername=string}
• urlname : either url_index, index_urlshow or index_urlsubdetail

• headername : The following headernames are recognized by the program:

- method=GET (default), method=POST, method=POST_BACK(method 1, method 2), method=POST_BACK,

method=SOAP and method=MULTIPART

- contenttype=application/x-www-form-urlencoded (default) or another contenttype string

- referer=string (optional)

- accept=string (optional)

- credentials=name,password or name,password,domain

 (optional, for sites that require the approved identity of the user)

- allowautoredirect=boolean (optional) Enter as string values : true (default) or false

- expect=string (optional)

 Values : 100-continue=false or 100-continue=true or 100-continue (same as =true)

- host=string (optional), to overrule the default host header that equals the url of the request

Note: Most headers have a .NET default value . If a certain header needs to be reset to that value use

 headername= , just the = without a value

 example contenttype=

• Most other headers that might be required can be constructed with a ‘customheader’:

- customheader=headername=headervalue

 e.g. customheader=Accept-Encoding=gzip,deflate

 customheader can also be used to add a custom cookie :

- customheader=Cookie=cookiename 1=value 1; cookiename 2=value 2; .. ;cookiename n=value n;

 examples :

 customheader=Cookie=_nss=1; tv_stations='channel'

 customheader=Cookie=cb-enabled=accepted; selectedPostcode='global_temp_1';

selectedProvider='global_temp_2'; selectedChannels='global_temp_3'

• And, only of significance for method=POST, POST_BACK or SOAP :

- postdata=post-data-string

 This header which is, by its definition, only meant to contain the postdata string for a regular POST method,

 like POST and POST_BACK.

 The program also uses its value for the SOAP method to fill the soapEnvelope xml file (see5.1.3)

- post-data-string : this string may contain the following variable components:

 in a postdata header for url_index:

19

 - 'urldate' to specify a date/time component (see 4.4.2.1 urldate format)

 - 'channel' to pass the site_id of the channel

 - 'index_variable_element' or any other global element (see 4.5.3 Special elements)

 - 'subpage' to pass the subpage data (see4.4.2.2 subpage format)

 - ‘config_credentials_user’ and ‘config_credentials_password’ (see Read-only-elements)

 in a postdata header for index_urlshow or index_urlsubdetail:

 - 'index_variable_element' or any other global element (see 4.5.3 Special elements)

• All headers may also contain the element values: ‘index_temp_1 to _9’ and any of the ‘global’ elements. They will be

expanded to their content value similar to other variable components.

Example:

url_index.headers {method=POST|contenttype=application/x-www-form-urlencoded}

url_index.headers {postdata=getEPG&StartTime='urldate'&ChannelIDs='channel'}

4.4.1.1.1 Headersets

When for a certain response more httprequests are needed, like in POST_BACK or subpages (see subpages and 4.4.2.2

subpage format), each page has its own url and by default use the same headers for each page. However, it is possible to

use different headers for each request if a site requires that. For that a headerset collection needs to be specified. Such a

headerset collection specifies all the headersets that are different from each other.

Syntax :

headername=headervalue_set1|=headervalue_set2|=headervalue_set3 .. etc
To repeat the value of the previous header, use |=-

headername=headervalue_set1|=headervalue_set2|=-
This repeats headervalue_set2 for all following pages.

Without this ‘repeat previous’ |=- as last , all following header values will be that of headervalue_set1 :

headername=headervalue_set1|=headervalue_set2
If a certain header is not needed for oone of the requests, specify without the value after the = :

headername=|=headervalue_set2
If a headervalue doesn’t change (remains same for all sets) , it is sufficient to specify just that value without a following |=

Example of just 2 headersets:

url_index.headers {customheader=Accept-Encoding=gzip,deflate}

url_index.headers {method=POST|=GET|=-}

url_index.headers {accept=text/html, application/xhtml+xml, image/jxr, */*}

url_index.headers {contenttype=multipart/form-data; boundary=----------7e31661210870|=application/x-www-form-

urlencoded|=-}

url_index.headers {host=www.mncvision.id}

url_index.headers {referer=https://www.mncvision.id/schedule/table}

url_index.headers

{postdata=search_model=channel&af0rmelement=aformelement&fdate='urldate'&fchannel='channel'&submit=Cari}

In set1 method=POST and contentype=multipart/form….

In set2 and following sets method=GET and contentype=application/x-www…..

All other headers remain the same for all sets.

Note: The postdata header in set2 will not harm because postdata headers are ignored in method=GET !

See 4.4.2.3.1 Subpage header list how to specify the allocation of headersets to subpages.

4.4.1.2 (depreciated) argument preload

(The functionality of preload option is included in method POST_BACK. However ,the ‘old style’ preload can still be used and

is described below. This section is still provided for compatibility reasons)

Some sites require a call to a specific url prior to the one with the required data. The program saves the cookies from the

response of this preload and re-issues it in the following http request. Such a preload can be done by adding the argument

preload. Example:

url_index {url(preload="http://www.mobistar.tv/tv-

guide.aspx")|http://www.mobistar.tv/epg.aspx?f_format=pgn&medium=0&lng=nl&f=|urldate|&t=xxxxx&s=|channel|,0,2,&

_=|urldate|}

An alternative way to specify this preload url is described in section 4.4.3 preload Url’s It is possible to specify a set of HTTP

headers for this url. That alternative also applies to preload for urlshow.

20

4.4.2 url_index
This is the url WebGrab+Plus uses to download the index pages (see 2.3 The Grabbed Site pages). Every site uses its own

way to compose these url's, but, in most cases, it contains references to the channel and to the timespan for which it is

valid. WebGrab+Plus includes an url_index builder that composes this url based on an entry in the SiteIni file with the

following syntax:

url_index{url|stringfragment-1|stringfragment-2| … |stringfragment-n}
• url : just an indication of the type of data that follows, (argument debug supported)

• stringfragment : a fragment of the urlstring for the position n. It can be either a fixed string fragment (independent

from channel, date or subpage) like http://www.tvgids or one of the 3 types of variable string fragments: channel or

urldate or subpage

• channel : The reference to the channel for which the url is meant. WebGrab+Plus uses the value of the site_id attribute

of the channel table in the WebGrab++.config.xml file. Most sites use a simple channel number as site_id but some

use rather complicated constructions. (e.g. TvGids.nl uses a number 1 for Nederland1, while Skynet.be uses nederland-

1?channelid=216 for the same). For most sites, a channel list file is provided together with the SiteIni file.

• urldate : The reference for the timespan or start date. Most websites have one index page per day. WebGrab+Plus

supports this per day timespan style.

The program also supports multiday e.g. weekly index pages (see also 4.3 General Site dependent data , maxdays). In

that case the urldate can specify a start day.

• Some other sites however have (occasional) index subpages e.g. when the number of shows of that day exceeds the

space of the displayed webpage. In that case the subpage reference has be specified:

subpage : Specifies eventual subpages part of the Url. See 4.4.2.2 subpage format

4.4.2.1 urldate format

The day string that appears at the position of –urldate– depends on the value of a separate SiteIni specification urldate, its

syntax:

urldate.format {daycounter|todaynumber} or
urldate.format {weekdaynumber|Sunday-number} or

urldate.format {weekdayname|Monday-name|Tuesday-name|…|Sunday-name} or
urldate.format {datestring|string|optional cultureinfo} or

urldate.format {datenumber|standard|offset} or
urldate.format {list|day1string|day2string|..|daynstring|{urldate format for following days}}

• datestrings follow the .Net standard for datestrings as found in :

http://msdn.microsoft.com/en-us/library/az4se3k1.aspx and http://msdn.microsoft.com/en-us/library/8kb3ddd4.aspx

• When the cultureinfo used for the datestring is different from the one given in the site specification (4.3 General Site

dependent data, cultureinfo) it can be added as option. Assume cultureinfo=nl-NL for the following examples.

• list method is to be used when the Site uses a value like –today– for today rather than a date value. It fills the url with

these day strings, eventually followed by whatever urldate format specified for the remaining days.

• datenumber method returns a number that represents a date-time value. It supports the following standards : VBA , the

daynumber as used in MS Office ; UNIX , the number of seconds from 1970/1/1 00:00 UTC ; JAVA , the number of

milliseconds from 1970/1/1 00:00 UTC ; TICKS , the number of 100 nanoseconds units from 00/00/00 00:00UTC . The

offset specifies a time offset w.r.t. to datenumber value. It must be entered as hours like 5:30 or 5.5

• weekdayname method is to be used when the daystring required is a nonstandard weekday name that cannot be

generated by the datestring method.

Some examples to illustrate:

urldate.format {daycounter|0} * output like: 0 1 2

urldate.format {weekdaynumber|0} * suppose today is Tuesday, output like: 2 3 4 ..

urldate.format {weekdayname|lu|ma|mi|ju|vi|sa|do} * suppose today is Wednesday, output like: mi ju vi ..

urldate.format {datestring|yyyy/MM/dd} * output like: 2010/05/10 2010/05/11 ...

urldate.format {datestring|dddd} * output like: dinsdag woensdag ...

urldate.format {datestring|d} * output like: 10-5-2010 11-5-2010 ...

urldate.format {datestring|d|en-GB} * output like: 10/5/2010 11/5/2010 ... (other culture, other standard)

urldate.format {datestring|ddd/dd/MMM/yyyy} * output like: ma/10/mei/2010 di/11/mei/2010 ...

urldate.format {datestring|ddd/dd/MMM/yyyy|en-GB} * output like: Mon/10/May/2010 Tue/11/May/2010 ... (other culture,

other standard)

urldate.format{datestring|dddd-dd-MM-yyyy} * output like: maandag-10-05-2010 dinsdag-11-05-2010 ...

urldate.format{list|vandaag|morgen|{datestring|dddd|nl-NL}} * output like (if today is Monday): vandaag morgen

http://msdn.microsoft.com/en-us/library/az4se3k1.aspx
http://msdn.microsoft.com/en-us/library/8kb3ddd4.aspx

21

woensdag donderdag ...

urldate.format{list|Today|{datestring|d|en-GB}} * suppose today is 9/5/2010 , output like: Today 10/5/2010 11/5/2010 ...

4.4.2.2 subpage format

subpage.format{number(format=xx)|leadstring|first page number|stopstring} or
subpage.format{letter|leadstring|first page letter|stopstring} or

subpage.format{list|subpage-1-string|subpage-2-string|..|subpage-n-string} or
subpage.format{list(format=xx step=stepsize count=countnumber)|startvalue}

• leadstring : fixed part of the subpage string.

• stopstring : The unique string that occurs on the subpage after the last one valid. When a subpage is specified in the

index_url specification, the program will automatically step from one page to the next until the stopstring is detected.

After that the same subpage stepping will start for the next day. If the stopstring is not detected the stepping will stop

after 8 subpage tries with a subpage warning and try the next day.

• startvalue : an integer for the first subpage value.

This startvalue may be expanded from a global variable like 'index_variable_element' (see 4.5.3 Special elements)

• stepsize : an integer number by which the startvalue will be incremented

• count : an integer number that determines the number of subpage values in the list.

• format : optional, specifies the number format. Default xx=D0

• startvalue : step and count may contain element references from ‘index_temp_1 to 9’ and/or a global element (see

4.5.3 Special elements) like ‘index_variable_element’

Some examples of to illustrate:

subpage.format {number||1|<p>page not found</p>} * output for subsequent pages: 1 2 3 ..

subpage.format {number|section_|1|page not found} *output: section_1 section_2 section_3 ..

subpage.format {letter|p|a|page not found} * output: pa pb pc ...
subpage.format {list|04:00|12:00|20:00} * output: 04:00 12:00 20:00

subpage.format {list(format=D2 step=6 count=4)|0} * output: 00 06 12 18

4.4.2.3.1 Subpage header list

By default, all subpages use the same headers, specified by url_index.headers. When different headers are required for

some subpages, a headerset collection needs to be specified as explained in 4.4.1.1.1 Headersets:

The allocation of wich headerset is used for wich subpage is done with a subpage header list.

Syntax:

subpage.headers {list|headerset_number for page1|headerset_number for page2|..etc}
If after a certain page the headerset remains the same for all following pages, specify |- as the last one

Example:

subpage.headers {list|1|2|-}

This allocates headerset 1 to subpage 1 and headerset 2 to all following subpages regardless of the number of following

pages.

4.4.2.3 Full examples of the url_index specification

Suppose WebGrab++.config.xml channel entry:

<channel update="i" site="tvgids.nl" site_id="1" xmltv_id="NED1-tvgids">NED1</channel>

And the url_index and urldate.format entries in the SiteIni:

url_index{url|http://www.tvgids.nl/zoeken/?q=&d=|urldate|&z=|channel|&t=0&g=&v=0}

urldate.format {daycounter|0} for 3 days will result in:

http://www.tvgids.nl/zoeken/?q=&d=0&z=1&t=0&g=&v=0

http://www.tvgids.nl/zoeken/?q=&d=1&z=1&t=0&g=&v=0

http://www.tvgids.nl/zoeken/?q=&d=2&z=1&t=0&g=&v=0

Another example:

<channel update="i" site="skynet.be" site_id="nederland-1?channelid=216" xmltv_id="NED1-skynet">NED1</channel>

url_index{url|http://www.skynet.be/entertainment-nl/tv/kanalen_|channel|&new_lang=nl&date=|urldate}

urldate.format {datestring|yyyy-MM-dd|nl-BE}

for 3 days will result in :

http://www.skynet.be/entertainment-nl/tv/kanalen_nederland-1?channelid=216&new_lang=nl&date=2010-06-22

http://www.skynet.be/entertainment-nl/tv/kanalen_nederland-1?channelid=216&new_lang=nl&date=2010-06-23

http://www.skynet.be/entertainment-nl/tv/kanalen_nederland-1?channelid=216&new_lang=nl&date=2010-06-24

And one using the list method:

<channel update="i" site="tvgids.upc.nl" site_id="Nederland+1" xmltv_id="NED1-upc">NED1</channel>

22

url_index {url|http://tvgids.upc.nl/TV/Guide/Channel/|channel|/|urldate}

urldate.format {list|Today|Tomorrow|{datestring|dddd|en-GB}}

 today being Tuesday, for 3 days will result in :

http://tvgids.upc.nl/TV/Guide/Channel/Nederland+1/Today

http://tvgids.upc.nl/TV/Guide/Channel/Nederland+1/Tomorrow

http://tvgids.upc.nl/TV/Guide/Channel/Nederland+1/Thursday

A subpage example:

<channel update="" site="plus.es" site_id="PLAYDC" xmltv_id="PlayDisney">PlayDisney</channel>

url_index{url()|http://www.plus.es/guiatv/resultados.html?tipo=dh5&frm=B&dia=|urldate|&c%5B%5D=|channel|&f=TO&p

r=L|subpage}

urldate.format {datestring|yyyy-MM-dd}

subpage.format {number|&pag=|1|No hay ningún título que cumpla con las condiciones de la búsqueda}

Supposing this channel has 2 subpages this will result in :

http://www.plus.es/guiatv/resultados.html?tipo=dh5&frm=B&dia=2010-09-30&c=PLAYDC&f=TO&pr=L&pag=1

http://www.plus.es/guiatv/resultados.html?tipo=dh5&frm=B&dia=2010-09-30&c=PLAYDC&f=TO&pr=L&pag=2

http://www.plus.es/guiatv/resultados.html?tipo=dh5&frm=B&dia=2010-09-30&c=PLAYDC&f=TO&pr=L&pag=3 (detects the

stopstring —> step to next day)

http://www.plus.es/guiatv/resultados.html?tipo=dh5&frm=B&dia=2010-10-01&c=PLAYDC&f=TO&pr=L&pag=1

http://www.plus.es/guiatv/resultados.html?tipo=dh5&frm=B&dia=2010-10-01&c=PLAYDC&f=TO&pr=L&pag=2

http://www.plus.es/guiatv/resultados.html?tipo=dh5&frm=B&dia=2010-10-01&c=PLAYDC&f=TO&pr=L&pag=3

(detects th e stopstring —> stop, last page of last day)

4.4.3 preload Url’s
(The functionality of preload option is included in method POST_BACK. However ,the ‘old style’ preload can still be used and

is described below. This section is still provided for compatibility reasons)

The program supports preload url’s for url_index and index_urlshow.

4.4.3.1 (depreciated) preload url for url_index

See also 4.4.1.2 argument preload

An alternative way to specify this url is as a separate entry. SiteIni element name url_preload. Its syntax follows that of

url_index :

url_preload{url|stringfragment-1|stringfragment-2| … |stringfragment-n}
See for the detail explanation of the parts 4.4.2 url_index . The url uses the same Url builder , headers and the same

variables (like urldate, channel etc) are permitted. An example:

url_preload {url()|http://www.csfd.cz/televize/?day=|urldate|&do=stationSelectForm-submit}

url_preload.headers {method=POST|allowautoredirect=false}

url_preload.headers {customheader=Accept-Encoding=gzip,deflate}

url_preload.headers {postdata=station0='channel'&station1=&station2=&station3=&station4=&stationNew=}

4.4.3.2 (depreciated) preload url for index_urlshow

Element name: index_urlshow_preload. Its syntax follows all the possible methods (scrub, modify) for normal SiteIni

elements and the syntax described in the next chapter4.4.4 other url elements. It also accepts http headers as explained in

4.4.1.1 HTTP Headers, method GET, POST, POST_BACK and SOAP. Example:

index_urlshow_preload.modify {set('index_temp_1' not "")|http://www.cyfrowypolsat.pl'index_temp_1'}

index_urlshow_preload.headers {customheader=Accept-Encoding=gzip,deflate}

index_urlshow_preload.headers {accept=text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8}

4.4.4 other url elements
The next important url is the one that points to the show detail page and possibly the show subdetail page. Normally there

is some kind of hyperlink with a <a href= tag that points to it but not always the complete url is found there. The SiteIni

specification for url's other than the url_index (above) allows to add the missing components if necessary:

url-elementname {url(optional arguments)|leadstring|separator strings}
• url-elementname : Can be either index_urlshow, (index_)urlsubdetail and index_urlchannellogo (optional)

• url : just an indication of the type of data that follows, (argument debug supported)

• leadstring : The invariable part of the url that sometimes misses from the html link

http://www.plus.es/guiatv/resultados.html?tipo=dh5&frm=B&dia=2010-10-01&c=PLAYDC&f=TO&pr=L&pag=3

23

• separator strings . As explained in 4.2.1.1 The 'separator strings' method. The regular expression method is not

supported here.

Example for show Max Geheugentrainer on site tvgids.upc.nl

index_urlshow {url|http://tvgids.upc.nl|} results in:

http://tvgids.upc.nl/TV/Guide/Programme/9184772/MAX_Geheugentrainer/Nederland+1/

And an example without a leadstring of the same show on site skynet.be:

index_urlshow {url||} results in:

http://www.skynet.be/entertainment-nl/tv/tv-gids/detail_max-geheugentrainer?programkey=MagnetMedia__11435188

!!Notice that the 'empty' leadstring || is required!!

4.4.4.1 multiple subdetail pages

Sometimes when a subdetail page is used by a site the data is split over more than one subdetail page. In that case it is

possible to define multiple urlsubdetail elements. (For this we use operations, action specifier 'modify', which will be

discussed in 4.6 Operations in detail.) The program will grab each of these pages and add all of them in one result. The

subdetail elements can be grabbed from that combined page . Example of multiple urlsubdetail element specification:

urlsubdetail.modify {addend|'index_urlshow'takepart.html}

urlsubdetail.modify {addend|####'index_urlshow'members.html}

urlsubdetail.modify {addend|####'index_urlshow'comments.html}

urlsubdetail.modify {replace()|####|\|}

The last line replaces the element separator placeholder #### by the | character that is used the program to separate

multivalue element values. (see 4.6.1.3 Multiple value elements and modify, for explanation about this element separator

character |)

4.4.5 the FTP and File protocol

4.4.5.1 FTP

The program also supports the FTP protocol. The configuration is very simple, just replace http:// in the url element

specification by ftp://. The program will automatically configure a FtpWebrequest .

Example:

url_index{url|ftp://ftp.pop-tv.si/|channel|_|urldate|_####_EPG.XML}

If the site requires user identification by means of a name and password , issue a credentials header:

url_index.headers {credentials=name, password}

4.4.5.2 File

Mainly for testing and debugging it can be useful to get a local file into the program. Like this:

url_index {url|file://computername/path/filename} or

url_index {url|//computername/path/filename}

4.4.5.3 exe

The option to use an external grabber in case the internal one is not able to yield the required response. For example, if the

response needs more than two http requests or requires a request method that is not supported. A dedicated executable

console program must be developed that accepts arguments as input and provides the response in a file named

response.txt

url-elementname {url|exepath arguments}

• url-elementname : Can be either url_index, index_urlshow, (index_)urlsubdetail and index_urlchannellogo

• exepath : the path and name of the executable

• arguments : the input arguments for the executable separated by spaces

4.5 Elements

All the supported elements are listed in APPENDIX E. In it, the SiteIni name, the xmltv target element name and an

overview of its properties.

There are:

• the elements scrubbed from the index page, element name prefix: index_

• the elements scrubbed from the show-detail page, no element name prefix or: detail_

• the elements scrubbed from the sub-detail page, element name prefix: subdetail_

The program allows most elements with the same xmltv target element, to be scrubbed from any or all of these three html

pages. If the program finds more than one scrubstring for a certain element any result will be added together in a way that

depends on the if it concerns a multiple value xmltv element or not (as discussed in 1.3 and 4.2.4.2 types single and multi)

All scrubstrings of these sections follow the syntax as explained in section 4.2 The SiteIni file basics with the action specifier

scrub , using either/or the separator string method or the regular expression method.

24

4.5.1 Non optional elements - elements needed by the program
See for more details the element name table in APPENDIX E, unchecked column optional

• index_showsplit

This is not a regular xmltv element, (it has no xmltv target name), but is required for the proper operation of the xmltv

update process.

As explained in section2.The grabbing, show update process and update modes, WebGrab+Plus uses the show data on

the index page to determine if an update of the xmltv file is necessary for that particular show. To do that it first splits

the index page into parts, one for each show. For that it needs the – index_showsplit - scrubstring that returns all those

show parts as result.

Normally, the index_pages list the shows of one day in ascending start-time order. Some sites however list shows of

several days on one page (multiday index_page, see also 4.3, maxdays). As a complication it occurs that the shows on

these multiday index_pages are not listed in pure ascending start-time order but in day section fragments (like morning,

afternoon, evening etc.), e.g. first all morning shows of all days followed by all afternoon shows of all days etc.

The program provides two options to sort the shows on this type of multiday index pages:

• First option: With the special attribute sort@. This will sort the shows in ascending time order. It can be used if the

division into the day section fragments occurs at fixed times of the day (e.g. the evening section always start at the first

show after 20:00). In that case enter :

 index_showsplit.scrub {type(sort@time-1, time-2, ..,time-n)|. . . .}

It can also be used if the division always occurs at — or immediately after - the next full- or half-hour following the last

show of the previous day section. In that case enter for full hour :

 index_showsplit.scrub {type(sort)|. . . .} or

 index_showsplit.scrub {type(sort@fullhour)|. . . .}

and for half-hour:

 index_showsplit.scrub {type(sort@halfhour)|. . . .}

• Second option: By scrubbing the fragment section of each day on the index_pages separately. Like , if the index page is

split in a day-section and an evening-section :

 index_showsplit {type(optional timespan=hours)|day-section-scrubstrings}

 index_showsplit {type(optional timespan=hours)|evening-section-scrubstrings}

Each scrub will result in an array of shows and the resulting arrays will be merged into one in ascending start time

order. The program will attempt to determine the time structures of the arrays automatically. In some cases it can help

to specify a timespan attribute, which is the approximate duration of each day section. E.g. if the day-section is from

05:00 to 18:00, specify timespan=13:00 and if the evening/night-section is from 18:00-05:00, specify timespan=11:00

Adding the attribute debug during the development phase will show the result of the sorting in the log file.

• Experience learned that the order in which the shows in the index pages occur can have nearly every imaginable form.

The following ‘specials’ have occurred (and are handled by the program):

o overlaps between subsequent index pages. The duplicate shows are normally removed automatically by the program,

but only if the remaining of the pages are in the normal ’starttime’ ascending order. If not, one can use the command

cleanup(removeduplicates) , see 4.6.4.6.1 Cleanup with argument removeduplicates

o multi day index pages with an order of fixed timeframes (in which more that one show can start), spread over the

days in a regular pattern. Here the command substring(type=element)|start length/repeat can be used to rearrange

the timeframes and the shows in it. See 4.6.4.3 Substring

o fully random or reverse order of the shows in the index page.

Use the command sort(ascending/descending,string/integer). See 4.6.4.9 Sort

o a mix of index shows of different channels. Use the command select|string operator to filter the shows to keep. See

4.6.4.8 Select

• index_start , xmltv element –start-

Scrubs the start time of the show, essential for both the xmltv output file as for the update decision process of the

program. See also 4.5.2.1 Time elements index_start, index_stop and index_duration.

• index_title , compared with xmltv element –title-

The show title is found on two places in most sites, on the index page and on the show detail page. The latter is the

most accurate and is used by WebGrab+Plus for the xmltv element -title– . The index_title is used (and essential) for

the xmltv update decision process.

Because some sites have 'varying' differences between both show titles and because WebGrab+Plus compares the

index-title with the title in the existing xmltv listing (originated from the show detail page), a one to one comparison is

not possible due to these differences. WebGrab+Plus uses a smart-comparison which results in a titlematchfactor as

detailed in 2.1 The show update process

If a site lists a combination of elements together with the index_title (like es category, title, subtitle ee or other

25

combinations including the title) it is better to scrub them with a separator argument without include or exclude

arguments! This yields all these elements in the index_title. The title comparison is smart enough to find the real title

within this combination.

In rare cases, a site has no comparable titles on index— and detail page. In such cases the title comparison can be

disabled by specifying titlematchfactor=0

4.5.2 Elements that are processed in a special way

4.5.2.1 Time elements

Recommended reading: APPENDIX B Times, time-zones and DST corrections !

• index_date (optional), part of xmltv element -start- and -stop-

Scrubs the date from the first index page which is the date of the first day of the timespan for which the shows will

update. If no index_date scrubstring is entered in the SiteIni file the date of 'today' is taken. By default the scrubbed

date value is only used as a check if the first grabbed index page is indeed from 'today'. If not, the scrubbing of the

shows will be stopped with an error message. When the dedicated argument force is added to the scrubstring, the

scrubbed date value will be used as the date of the first show on the index page. The date of the following days is

calculated by the program.

• index_start, xmltv element –start-

The value of this element (and also the next one, index_stop), may contain a full date/time or just a time alone.

If it contains just a time alone, (e.g. when the index_page doesn’t provide a date for the show to be scrubbed) the date

is added automatically as described above in index_date.

When a date component is present, obviously, adding a date is not necessary. Also, any value of index_date is ignored.

The scrubbed value is processed by a piece of the program that tries to recognise a time or a date/time in it. It uses the

known date/time patterns for the cultureinfo value (see 4.3 General Site dependent data) and is in general rather

forgiving w.r.t small deviations. If the recognition into a data/time fails, the special argument 'pattern' can help. The

value of 'pattern' must be enclosed by " " and follows the notations of

https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx

Some examples:

index_start.scrub {regex(pattern=”yy/M/d H:m”)||regular expression||} will recognise a string 15/8/18 0:30

index_start.scrub {single(pattern=”HH:mm dd MMMM yyyy”)|bs|es|ee|be} accepts 06:30 dinsdag 18 augustus 2015

Note: that argument ‘pattern’ can also be used in ‘operations’. See 4.6.5 Operations (and scrubs) with argument

'pattern' and 4.6.4.5.3 Date and time calculations

• index_stop (optional), xmltv element –stop-

Scrubs the stop time of the show. Because not all Sites provide this information (relying on the start time of the next

show for it), WebGrab+Plus does the same if no scrubstring for index_stop is entered in the SiteIni file. The resulting

value, either from direct scrub or from substitution, is essential for the xmltv update decision process. As with

index_start the value can consist of a time only or a complete data/time. It also accepts the special argument 'pattern'

to help the recognition of it. See above.

• index_duration (optional), xmltv element –stop-

Is the alternative for index_stop. Some Sites specify this rather than the stop time. WebGrab+Plus calculates the stop

time from stop=start + duration. The scrubbed value is processed to recognize the correct timespan. It accepts the

following formats:

- hh:mm

- dd:hh:mm

- minutes (integer)

(The operations discussed in 4.6 Operations provide ways to convert it to this format if it isn’t)

4.5.2.1.1 Times from the detail page

In rare cases, the showtimes are not listed on the index_page. The program can handle the following of those cases:

• Start time from the index_page and only stop time from the detail_page

Specify (detail_)stop in the SiteIni will automatically handle this.

• Start time from the index_page and duration from the detail page

Specify (detail_)duration in the SiteIni

• Both start and stop time from the detail_page

Specify both (detail_)start and (detail_)stop or (detail_)duration in the SiteIni

In this latter case, the incremental update mode (see 2.1 The show update process) is disabled, because the most

important value (start time) is missing at the time of the update mode decision process.

https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx

26

4.5.2.2 The others

• titleoriginal (optional), xmltv element –title-

See also 4.2.5.6 Dedicated Arguments.

It is meant to allow multiple titles for different languages. The scrubstring can include the dedicated argument lang.

The syntax of it is :

lang or lang=xx
o xx=two letter language spec like en for English

If a lang argument is given without a language value or with the value “xx” or if no lang argument is added, the

title lang attribute in the xmltv will be lang="xx", which is supposed to indicate the 'original' show title in an

unspecified language. If a two-letter language spec is provided, it will use that in the xmltv lang= attribute.

Example:

 title.scrub {single|….}

 titleoriginal.scrub {single (lang=en)|….}

could result in something like:

<title lang="es">Mujeres Desperadas</title>

<title lang="en">Desperate Housewives</title>

• productiondate (optional), xmltv element –date-

The productiondate should yield the year of the production of the show. As it is often hidden inside another element,

like the description it is rather difficult to find unique element separators. WebGrab+Plus will scrub the first 'year' value

(yyyy) between the element separators automatically.

• episode (optional), xmltv element –episode-num-

For this element a dedicated argument 'pattern' can be used to recognise and convert the scrubbed value. The

background of that is that the majority of xmltv import utilities of PVR programs expect a certain standard of the

episode number. (Used to schedule series recordings). The favourite episode number standard is xmltv_ns. With the

help of the 'pattern' argument most custom episode number formats can be converted into the xmltv_ns standard or

into a simple 'onscreen' format. See (5.1.5 Using patterns)

• Boolean type elements (optional) like ,

subtitles (xmltv element –subtitles-),

premiere (xmltv element –premiere-) and

previousshown (xmltv element –previously-shown-)

These elements have no value in xmltv, they are either listed , like <premiere/>, or not listed.

Note !! The program needs the string value true to add a listing to the xmltv file. If this required value cannot be

scrubbed directly (because it is listed differently in the html page), use a modify operation to replace the actual value

with true. E.g. like:

subtitles.modify {replace(not "")|'subtitles'|true}

4.5.3 Special elements
(see APPENDIX E)

• temp elements :

temp_1 up to temp_9 .

Available for each of the three prefix versions.

These special elements have no direct xmltv destination. They can be used to temporary scrub and store data that is

later used together with the action specifier modify (see 4.2.3 Action specifiers and 4.6 Operations) to alter or create

other elements.

• Global elements :

global_temp_1 up to global_temp_9 and index_variable_element .

These special elements have no direct xmltv destination.

There is no functional difference between global_temp elements and index_variable_element other than that the

index_variable_element is limited to the index_ prefix . The global_temp elements were added later to the list of global

elements, index_variable_element is maintained due to compatibilty.

These elements can be used if any of the other scrubstrings requires a variable value (e.g. with each channel or day).

Their value can be scrubbed (from the un-split index-page) and modified. It is the only element that :

o can be used in a scrub string as part of separatorstrings bs es ee or be or a regular expression like in :

 global_temp_2.scrub {single|Billing\t\n||\t|\t} * scrubs the value from the index page

 and uses it to split the index pages in shows :

 index_showsplit.scrub {multi|'global_temp_2'||\n}

27

o can also be used in argument values like: ‘

 index_showsplit.scrub {multi(includeblock='index_variable_element')|"column">|time">||}

o allows to pass certain readonly values (see 4.5.4 Read_only elements) from the config file or the SiteIni site line

with a modify command (see 4.6 Operations for details about the modify command) like in :

 global_temp_5.modify {addstart|'config_site_id'}

 This line copies the site_id for the actual channel from the channel list in the config file.

 Other supported config values are :

 - the xmltv_id entered as 'config_xmltv_id’

 - the display_name entered as 'config_display_name'

 - the site_channel entered as 'config_site_channel'

 - the credentials entered as 'config_credentials_user' and 'config_credentials_password'

 - and timespan entered as 'config_timespan_days'

 And these from the SiteIni ‘site’ line :

 - site_episodesystem, site_subtitlestype and site_ratingsystem

o allows to pass date/time read-only values urldate, now and showdate. (see4.5.4 Read_only elements)

o Its value and function is kept independent of the 'scope' (see 4.6.1.1).

• index_site_channel and index_site_id :

When specified, a channel-list file will be created automatically. This is a file that lists the available channels of the site,

in a format that can be copied directly into the config file WebGrab++.config.xml. These files are supplied together

with the SiteIni file when downloaded from http://www.webgrabplus.com/epg-channels. As default, the allocation of

the values of these elements in for channel specification in the config file WebGrab++.config.xml will be as follows:

<channel update="i" site="site" site_id="index_site_id"

xmltv_id="index_site_channel">index_site_channel</channel>

With the dedicated argument alloc it is possible to change the allocation of these values. This argument accepts only

three values : site_id, xmltv_id and display_name E.g. (alloc=site_id,display_name)

These elements are scrubbed from the un-split index-page by default. If the channellist data is located on another

page the url_index specification must be overruled by specifying the one for this page after the one for the tv-program

data. When the channel data if found on more than one page subpages can be used. (see 4.4.2.2 subpage format).

• sort_by :

This must be specified when using the command sort (see APPENDIX E and 4.6.4.9 Sort).

It must have the value of that part of the multivalue element by which it is to be sorted. The argument target links it to

the multivalue element to sort. It can be scrubbed and modified.

4.5.4 Read_only elements
(See APPENDIX C)
Elements that pass parameter values from various sources in operations. Cannot be scrubbed or modified.

• previous value elements: In these elements the value of the previous scrub is stored. The program automatically stores

the values of previous scrub of the following elements: index_start, index_stop, index_duration, temp_1 to –9. These

values can be recalled by adding an additional prefix previous_ to the element names.

A typical use is when a site displays index_pages graphically, each next show in a horizontal grid, the start and stop

times hidden in pixel coordinates, then it is necessary to know the previous value of time elements to calculate the

actual start and stop time. (See also 4.6.4.5.3 Date and time calculations)

• urldate Passes the urldate value (unformatted!) of the url_index with which the actual page is grabbed. The returned

value must be formatted to the required format using the format argument (see 4.6 arguments).

• urldate_formatted Passes the urldate value in the format specified by urldate.format. (see 4.4.2.1 urldate format

• now Passes the date and time value (unformatted!) of the actual moment. The returned value must be formatted to the

required format using the format argument (see 4.6 arguments).

• showdate Passes the epg date value (unformatted!) of the actual show being grabbed. Warning! It is obvious that this

will only return a value after the start time of the show is grabbed! The returned value must be formatted to the

required format using the format argument (see 4.6 arguments).

• subpage_formatted Passes the subpage value of the actual subpage as specified by subpage.format. (See 4.4.2.2

subpage format)

• config_site_id Passes the value of the site_id of the channel as specified in the config file.

• config_site_channel Passes the value of the site_channel of the channel as specified in the config file.

• config_xmltv_id Passes the value of the xmltv_id of the channel as specified in the config file.

• config_display_name Passes the value of the display_name of the channel as specified in the config file.

• config_timespan_days Passes the value of the days component of the timespan in the config file

• config_credentials_user Passes the username of the credentials for the actual site in the config file

http://www.webgrabplus.com/epg-channels

28

• config_credentials_password Passes the password of the credentials for the actual site in the config

• site_episodesystem expands to the episodesystem value in Site dependent data (see 4.3)

• site_subtitlestype expands to the episodesystemvalue in Site dependent data (see 4.3)

• site_ratingsystem expands to the rating systemvalue in the Site dependent data (see 4.3)

4.5.5 XMLTV attributes
Before the release of 2.1.1 of the program, xmltv attribute values were added through 4.3 General Site dependent data.

E.g. the lang attribute with the language part of cultureinfo, the system attribute of element episode-num with

episodesystem etc.

Starting program version 2.1.1 support for xmltv attributes has been completely overhauled. Most xmltv attributes as

described in xmltv.dtd can be used and given a value. See 5.1.5 for further details on how to add xmltv attributes.

See 5.1.5.4 Overview of supported xmltv attributes for a complete list of the supported xmltv attributes and the methods to

give them a value.

4.6 Operations

Action specifier: modify

With the operations described in this section it is possible to modify already scrubbed elements and/or obtain a value by

other means than scrub from a (html) page. The elements for which these modifications are supported are listed in

APPENDIX E Element names, column action. The syntax to specify such a modification:

For command replace:

element.modify {replace(optional arguments)
|optional expression-1|optional expression-2}

or for commands remove, substring, addstart, addend, select, calculate and set

element.modify {command(optional arguments)|optional expression-1}
or for commands cleanup, clear and sort

element.modify {command(optional arguments)
• element : Any of the elements listed in APPENDIX E for which the action specifier modify is allowed.

• modify : the action specifier needed for all operations.

• commands :

o replace : replaces the value of expression-1 with that of expression-2 (see 4.6.4.1 Replace)

o remove : removes the value of expression-1 (see 4.6.4.2 Remove)

o substring : extracts a part of expression-1 (see 4.6.4.3 Substring)

o addstart : adds the value of expression-1 to the start of the element (see 4.6.4.4)

o addend : adds the value of expression-1 to the send of the element (see 4.6.4.4)

o calculate : to perform calculations and conversions (see 4.6.4.5 Calculate)

o cleanup : tidying up of elements (see 4.6.4.6 Cleanup)

o clear : to erase the content of any element (see 4.6.4.7 Clear)

o select : to select certain members of multi value elements (see 4.6.4.8 Select)

o sort : to sort multi value elements (see 4.6.4.9 Sort)

o set : gives an element a value irespective of its current value. (see 4.6.4.10 Set)

• arguments :

o conditional arguments:

• Suited for all commands (as above)

There are two possible sets of conditional arguments:

• Pre-conditions that needs to be true for the operation to be performed. These are evaluated first.

It allows to evaluate the value of any element or compare element values with constants or other

elements. (4.6.2.4.1 Pre-Conditional arguments).

• Post-conditions, simple condition that only evaluate the value of the element to be modified before or after the

operation. (4.6.2.4.2 Post-Conditional arguments)

o debug :

• Suited for all commands (see above)

• Adding the word debug as argument will start logging of the modify process for the element in the

WebGrab++.log.txt file.

o format : Applies to calculate command (see 4.6.4.5 Calculate). Specifies the output format for the calculate

command and the episode number format in episode pattern argument. (see 5.1.5.2)

• Numeric formats: (see format_argument)

• Date and Time formats: (see 4.6.4.5.3 Date and time calculations)

http://xml.coverpages.org/XMLTV-DTD-20021210.html

29

• Converting formats: Performs a conversion.

o type : Specifies the index base in operations using (place)indices to for string editing and command calculate -

index-of (4.6.4.5.2) and count (4.6.4.5.1). Can be used:

▪ in Commands remove, replace or substring. (see 4.6.1.4 Expression-1 with indices)

▪ in Command calculate – 4.6.4.5.2 @ Index-of and 4.6.4.5.1 # Count

▪ to indicate the use of a regular expression in expression-1 (see 4.6.1.5 Expression-1 with 'regular expressions'

▪ in Command set to run an external program, see 4.6.4.10.1)

o separator : This specifies a separator string value that is used when converting multi value elements into a combined

single value (see4.6.1.3 Multiple value elements and modify)

o style : This argument can be added to the cleanup command (see 4.6.4.6 Cleanup) to specify the required style of

the cleanup result or specify a certain string conversion. (see 4.6.4.6.3 Cleanup as string converter)

o removeduplicates , link, span and keepfirst or keeplast : To be used with command cleanup to remove possible

duplicates from multi value elements. (see 4.6.4.6.1 Cleanup with argument removeduplicates)

o tags : To be used with command cleanup to remove strings enclosed by specified start– and end- strings.

 See (4.6.4.6.2 Cleanup with argument tags)

o pattern : specifies how the value of certain elements must be interpretated to facilitate recognition and conversion.

See (5.1.5 Using patterns) for details.

Comes in two forms :

▪ date time pattern See (5.1.5.1 Date-time patterns) Can only be used for the time elements (index_ detail_)

start and stop . See also (4.5.2.1 Time elements) . Can be used to recognise and convert 'non standard,

custom' datatime values into the standard that belongs to the cultureinfo value as in (4.3 General Site

dependent data)

▪ episode number pattern See (5.1.5.2 Episode-number patterns) Only works for element (index_ detail_

subdetail_) episode. Can be used to convert 'non standard' episode data into the standard selected by the

episodesystem value as in (4.3 General Site dependent data)

• expression-1 and expression-2 components .

 these expressions can be composed with:

o text : all characters with exception of | { and '

If any of these are needed in the string they have to be preceded by the backslash character \, like O'Neil must be

entered as O\'Neil

o element : to be entered between ' ' , like 'title' or 'temp_1',

the value of the element will be inserted in the expression result

o scrubstring : to be entered between '{ }' like '{single|<a ref=|<p>|</>|<table}'

The use of a scrubstring in this way has a small limitation: The scrub is performed from the same html page as from

which the element is originated. So, in case of an element from the index page the scrub entered here is also done

from the index page.

In most cases it is easier and more flexible to use the 'temp' and 'index_temp' elements instead.

See also 4.6.1.1 for limitations.

o indices : Expression-1 only.

Can be used to extract (with commands substring and replace) or remove (with command remove) parts of a

source string. (see for more details4.6.1.4 Expression-1 with indices)

o regular expressions : Expression-1 only.

As with indices (see above) these can be used together with the commands substring, replace and remove. (see

4.6.1.5 Expression-1 with 'regular expressions')

o arithmetic expression in the case of command calculate (see 4.6.4.5 Calculate).

o combinations of text, element, scrubstring, indices and arithmetic expression.

See 4.6.4 The modify commands for examples.

4.6.1 Notes and examples of the effects of modify

4.6.1.1 The order of the actions and the argument scope.

WebGrab+Plus executes the scrubbing and modifying of the elements in a defined order. Most of these steps have a named

reference called scope, which purpose will be discussed later in this section. Briefly the order of actions is as follows:

1. scope=urlindex, compose/modify the url_index and grab the index-page(s)
2. scope=datelogo, scrub/modify index_date, global elements and index_channellogo

3. scope=splitindex, split/modify the index-page(s) in index shows

4. Step through the index shows one by one
5. scope=indexshowdetails, scrub/modify all other index_ elements from the index show.

6. Update decision. If no update - - back to 4, next index show

30

7. if: it is an index_only channel or: if no valid urlshow is scrubbed,

 back to 4, next index show
 or else:

8. grab the show-detail page
9. scope=showdetails, scrub/modify all show-detail elements

10. if: a valid urlsubdetail is scrubbed,
11. grab the sub-detail page

12. scope=showsubdetails, scrub/modify all sub-detail elements

13. compose the xmltv elements and write them to the xmltv output file
14. if more shows, back to 4, next index show. Else: next channel.

Not in this order, but with their own scope:

0. scope=channellist, scrub/modify a channellist file

1.b scope=postback, to be used for the ‘special scrubs’ required for POST_BACK Http protocol (see 5.1.2 How to

configure a SiteIni file for a site using the POST_BACK Http protocol)

• The order in which the scrubbing of the elements is done (in actions 2. 5. 9. 12. and 0.) is fixed by the program, not

important for the results and independent of the order of the scrubstrings in the SiteIni file.

• The order in which the modify operations are done (in actions 2. 5. 9. and 12.) is determined by the order in which the

modify operations (for that group : scope) are listed in the SiteIni file. E.g. in 5. , the modification of all index_elements

other than index_date, global elements and index_channellogo is done. It will modify these in the order they occur in

the SiteIni file.

• The range of actions for which an operation of elements is executed is called scope.

Some general supporting elements , like the index_temp and global elements (see 4.5.3 Special elements) have a wider

scope (urlindex, datelogo, splitindex and indexshowdetails), because they are used as supporting elements for others.

Because of that, the operations specified for these supporting elements, will be executed for all these actions even when

the operation is meant only for one of them. This can lead to unexpected results and unnecessary consumption of

processing time. To avoid this, the argument scope can be added to the operation (see 4.6.1.2 The use and effect of

argument scope).

It is important to realize that this order will influence the result and also poses restrictions on the use of other elements in

the modify operation. For the influence on the result consider the following:

Suppose: description = A short story

Case 1.

temp_1.modify {calculate(format=F0)|'description' " " #} result temp_1 = 2

description.modify {remove|short } result description = A story

Case 2.

description.modify {remove|short } result description = A story

temp_1.modify {calculate(format=F0)|'description' " " #} result temp_1 = 1

These simple cases illustrate that modify operations work based on the results of previous modify operations.

This also explains the restrictions: Operations that try to use elements that have no value (as yet) will not work. Like trying

to use (non index_) elements in 5. scope=indexshowdetails. That won’t work because these elements are not yet

scrubbed, that occurs later in 9. scope=showdetails

Consider the following:

A site has only show-detail links for a limited number of shows. We scrub both index_description and description to get a

description in both cases. That could create a double description in case of a show with a show-detail link. So, we would like

to erase the index_description if the description is not empty. It is only logical we try this:

index_description.modify {remove('description' not "")|'index_description'}

Unfortunately, that will not work because this operation is done in 5. and uses an element (description) that is only

available after 9. A way to solve this particular case is :

index_description.modify {remove('index_urlshow' not "")|'index_description'} (It tests for the show-detail link

index_urlshow to exist which value is available in 5.)

4.6.1.2 The use and effect of argument scope
As explained in 4.6.1.1 the scope of an operation is the (range of) steps for which the operation is executed. By adding the

argument scope to the specification of the operation the scope can be narrowed to a certain (just one) step. The syntax:

element.modify {command(scope=string other-arguments)|..}
If a group of subsequent operations in the SiteIni should be set to the same scope, scope.range can be used. The syntax

of that:

scope.range {(string)|end}
any number of operations in this scope

31

end_scope
or

scope.range {(string)|lines}
lines number of operationd in this scope

• string : one of the following (see 4.6.1.1) :

o urlindex
o datelogo
o splitindex
o indexshowdetails
o showdetails
o showsubdetails
o channellist
o postback

• end : the word end indicates that the program expects end_scope after the last operation that belongs to the group for

which the scope has to be set.

• alternatively the number of lines (containing operations with the same scope) can be specified.

4.6.1.3 Multiple value elements and modify

Relevant argument:

separator : This specifies a separator string value that is used when converting multi value elements to a combined single

value. It can be used together with the commands remove, replace, addstart and addend. If this argument is entered,

the operation will try to convert the result in a single value string, adding the separator string between the multi value

components.

• Some explanation of the internal handling of elements: Most elements can have more than one value, either through

separators, through multiple scrubs or by being a multi type scrub. Internally they are not stored as array but as a

combined string with the | character as separator. Thus, an element with the values AAA BBB ccc ddd will have the

internal representation AAA|BBB|ccc|ddd depending on another element property , multiple xmltv value, true or false

and how these values will be written to the xmltv file. If true (multiple), it will get multiple xmltv elements like:

 <element>AAA</element>

 <element>BBB</element> etc.

If false, they will be added together, separated by a period-space, like:

 <element>AAA. BBB. ccc. ddd.</element>

• How does this effect result of operations?

For that, the argument separator plays a determining role.

In operations, all elements, in any of the expressions-1 or 2, are considered multi value elements (a single value

element as a multi value element with just one value). Each value is evaluated for the requested operation individually,

one at the time. At the end of this process, when the expression is assembled, the resulting components are 'added'

together, separated by the string specified by the separator argument. (see above). This results in two effects:

o If no separator argument is entered, or if its value is "\|", the before mentioned multi value separator | is placed

between the components. The effect of this is described at the start of this section, it keeps its potentially multi-

value nature.

o Any other value of the separator argument will combine the components in a single string, with this separator string

between them.

32

TABLE 1

Multi Value Elements examples:

element-to-modify.modify{command(argument)|expression-1|expression-2}

element-to-modify element command argument |expession-1 | result

expession-2

Abc def. Ghi|Jkl|Mno addstart |'element'. | Ghi|Jkl|Mno. Abc def.

Abc def. Ghi|Jkl|Mno addstart |'element'\|| Ghi|Jkl|Mno|Abc def.

Abc def. Ghi|Jkl|Mno addstart separator=" & " |'element'. | Ghi & Jkl & Mno. Abc def.

Abc def. Ghi|Jkl|Mno addend separator=", " |'element'. | Abc def. Ghi, Jkl, Mno.

Abc|Def Ghi|Jkl addend separator=", " |* 'element'. | Abc*Ghi, Jkl.def*Ghi, Jkl.

Ghi, Jkl, def, Mno. Ghi|Jkl|Mno remove separator=", " |'element'. | def,

- empty - Ghi|Jkl|Mno addstart |'element'| Ghi|Jkl|Mno

Abc|Def|Ghi Ghi|Jkl|Mno remove |'element'| Abc|Def

Abc|Def|Ghi Ghi|Jkl|Mno replace |'element'|Xyz Abc|Def|Xyz

Abc|Def|Ghi Ghi|Jkl|Mno replace separator=" & " |'element'|Xyz Abc & Def & Xyz

4.6.1.4 Expression-1 with indices

• Indices are (integer) numbers that specify (zero based) positions and length of parts of element values.

• Indices in expression-1 are only supported in combination with the commands remove, substring and replace. (not with

commands addstart, addend, cleanup and calculate)

• Indices in expression-2 are not supported.

Relevant argument : type

o When expression-1 is specified by means of place-indices in commands remove, replace or substring, argument type

specifies the index-base:

Possible values are :

▪ type=char (the indices specify character positions or length)

▪ type=word (the indices specify word positions or length)

▪ type=sentence (the indices specify sentence positions or length)

▪ type=paragraph (the indices specify the paragraph position or length)

▪ type=element (the indices specify element positions or length in case of multi value elements, see 4.6.1.3)

o Argument type is also used to specify other forms of expression-1 values:

▪ type=string (default, expression-1 is specified as string, no indices)

▪ type=regex must be used to indicate the use of a regular expression in expression-1 (see 4.6.1.5 Expression-1

with 'regular expressions')

• Indices must be entered as (integer) numbers or as element enclosed by ' '. The first number represents the start

position, the second (optional) number the length and the third (optional) the repeat offset.

• The basic structure and syntax of expression-1 containing indices is :

element-to-modify.modify {command(type=)|'element' startpos optional-length}
Between 'element' startpos and optional-length a space is needed. If 'element' is the same as the element-to-modify, it

can be left out of expression-1

element-to-modify.modify {command(type=)|startpos optional-length}
o length is optional. If left blank, the length to the end is taken.

o startpos can be negative, in that case the position counting from the end backwards is taken.

o startpos and/or length can also be entered by way of 'element' in which case the integer value of 'element' is used. In

this case the element-to-modify cannot be left out! (see 4.6.4.5.1 # Count and 4.6.4.5.2 @ Index-of)

• The effect on the value of element to modify can best be described with:

'substitute the actual value with the result of the expression'

This is also the case if the element-to-modify is another than 'element ':

element-to-modify.modify {command(type=)|'element' indices}
 'The resulting value of the element-to-modify will be the result of expression-1'

 The original value of element-to-modify will be substituted.

− Beside the basic structure and syntax, more complex forms are supported:

|startpos-1,startpos-2,..,startpos-n length/repeat}
and of course

|'element' startpos-1,startpos-2,..,startpos-n length/repeat}
− repeat The distance from startpos-1 at which the sequence is repeated. Default is full length (no repeat)

33

− multiple startpos values must be separated by comma's.

− startpos, length and repeat maybe entered as 'element'

Table.2 illustrates the results of the expressions with indices

4.6.1.5 Expression-1 with 'regular expressions'

For a short general introduction of 'regular expressions' see 4.2.1.2 The 'regular expression' method

Relevant Argument: type

• Similar to indices, general expressions in expression-1 are only supported in combination with the commands remove,

substring and replace .

• They are not allowed in expression-2.

• To indicate that expression-1 contains a regular expression the argument type=regex is required.

• A regular expression in an operation must be enclosed by " ".

A regular expression may contain elements, enclosed by ' ' which value may in itself contain parts of - or whole regular

expressions, like:

"regex-part'element-containing-a-regex-part'regex-part . . .etc"
Syntax :

• For the commands substring and remove:

element-to-modify.modify {command(type=regex)|"regular-expression"}
• If element contains the ‘source data’

element-to-modify.modify {command(type=regex)|'element' "regular-expression"}
• For command replace , add expression-2 to any of the entries above, like:

element-to-modify.modify {replace(type=regex)|"regular-expression"|expression-2}
Example: Suppose the title contains the names of the director and a list of actors that must be removed and moved to the

appropriate elements:

Title : The "Pelican Brief" dir.: Alan J. Pakula, starring: Julia Roberts, Denzel Washington

This will remove director and the actors and places them in where they belong:

actor.modify {substring(type=regex)|'title' "(?:starring): *(.*?)(?:, *(.*))"}

title.modify {remove(type=regex)|"((?: starring): *(?:.*?)(?:, *(?:.*)))"}

director.modify {substring(type=regex)|'index_title' "(?:dir\.):\s*(.*?),"}

title.modify {remove(type=regex)|"((?: dir\.):\s*(?:.*?),)"}

Table 2

34

(part of chapter 4.6.1.4 Expression-1 with indices)

Indices examples: Red = selected parts Blue = not selected

---> with command substring and remove: element.modify {command(type=xx separator=xx)|expression-1}

expression_1 command substringcommand remove

element value separator type indices result: result:

single value Abc def ghi. Jkl mno pqr. char 2 4 or -23 4 c de Abf ghi. Jkl mno pqr.

Abc def ghi. Jkl mno pqr. word 2 3 or -4 3 ghi. Jkl mno Abc def pqr.

Abc def ghi. Jkl mno pqr. sentence 0 1 or -2 1 Abc def ghi. Jkl mno pqr.

Abc def ghi. Jkl mno. element 0 1 or -1 1 Abc def ghi. Jkl mno. - empty -

multi start 0123456789 char 0,4,8 2 014589 2367

repeat 0123456789 char 0,3 1/5 0358 124679

multi value Abc def ghi|Jkl mno pqr|Stu vwx yz char 2 4 c de|l mn|u vw Abf ghi|Jko pqr|Stx yz

Abc def ghi|Jkl mno pqr|Stu vwx yz char -9 4 c de|l mn|tu v Abf ghi|Jk opqr|Swx yz

Abc def ghi|Jkl mno pqr|Stu vwx yz word 1 1 or -2 1 def|mno|vwx Abc ghi|Jkl pqr|Stu yz

Abc def. Ghi jkl.|Mno pqr. Stu vwx yz. sentence 0 1 or -2 1 Abc def.|Mno pqr. Ghi jkl.|Stu vwx yz.

Abc def ghi|Jkl mno pqr|Stu vwx yz element 1 1 or -2 1 Jkl mno pqr Abc def ghi|Stu vwx yz

multi start Abc def ghi|Jkl mno pqr|Stu vwx yz word 0,2 1 Abc ghi|Jkl pqr|Stu yz def|mno|vwx

multi start Abc def ghi|Jkl mno pqr|Stu vwx yz element 0,2 1 Abc def gh|Stu vwx yz Jkl mno pqr

w. separator Abc|def|ghi|jkl ", " element 1 1 def, ghi Abc, jkl

no length Abc def ghi. Jkl mno pqr. char 2 or -23 c def ghi. Jkl mno pqr. Ab

out of range Abc def ghi. Jkl mno pqr. char 2 50 c def ghi. Jkl mno pqr. Ab

out of range Abc def ghi. Jkl mno pqr. char 50 2 - empty - Abc def ghi. Jkl mno pqr.

out of range Abc def ghi. Jkl mno pqr. char -27 5 Abc def ghi. Jkl mno pqr.

---> with command replace: element.modify {replace(type=xx)|expression-1|expression-2}

expression_1 expression-2 command replace

element value type indices result:

single value Abc def ghi. Jkl mno pqr. char 2 4 or -23 4 x Abxxxxf ghi. Jkl mno pqr.

Abc def ghi. Jkl mno pqr. word 2 3 or -4 3 xyz Abc def xyz xyz xyz pqr.

Abc def ghi. Jkl mno pqr. sentence 0 1 or -2 1 Uvw xyz. Uvw xyz. Jkl mno pqr.

Abc def ghi. Jkl mno pqr. element 0 1 or -1 1 xyz xyz

multi start 0123456789 char 0,4,8 1 xyz xyz123xyz567xyz9

repeat 0123456789 char 0,3 1/5 xyz xyz12xyz4 x yz67xyz9

multi value Abc def ghi|Jkl mno pqr char 2 4 or -9 4 x Abxxxxf ghi|Jkxxxxo pqr

Abc def ghi|Jkl mno pqr word 1 1 or -1 1 xyz Abc xyz ghi|Jkl xyz pqr

Abc def. Ghi jkl.|Mno pqr. sentence 0 1 or -1 1 Uvw xyz. Uvw xyz. Ghi jkl.|Uvw xyz.

Abc def|Jkl mno pqr|Stu vwx element 1 1 or -2 1 Xyz Abc def|Xyz|Stu vwx

multi start Abc def|Jkl mno pqr|Stu vwx element 0,2 1 xyz xyz|Jkl mno pqr|xyz

4.6.2 Conditional operations and arguments
The purpose of these is to decide if a certain action is to be executed or not. They always result in a value, true or false. If

true the action will be executed.

These can consist of the following elements:

− ‘boolean entities’ that represent a boolean value ‘true’ or ‘false’ after evaluation (see 4.6.2.1 Boolean Entities)

− ‘boolean operators’ & (and), | (or), ^ (xor) and ! (not) that enable to combine ‘boolean entities’ in ‘boolean

expressions’ (see 4.6.2.2 Boolean Operators)

− ‘boolean expressions’ wich are a combination of ‘boolean entities’ and ‘boolean operators’ and will after evaluation result

in a boolean value ‘true’ or ‘false’ (see 4.6.2.3 Boolean Expressions)

− ‘conditional queries’, which can occur as ‘pre-or-post conditional argument’ (see 4.6.2.4.1 Pre-Conditional arguments

and 4.6.2.4.2 Post-Conditional arguments) or in ‘if’ and ‘else’ statements (see 4.6.2.4.3 The ‘if’ and ‘if – else’ queries)

4.6.2.1 Boolean Entities

• Think of these such as ‘is 7 greater than 9 ?’ or ‘does the word Tree contain the letter r ?’ etc

• They result in a boolean value , ‘true’ or ‘false’ after evaluation, so in fact they only have these two possible values.

35

• The most simple ones are those used in post-conditional arguments, anycase, null and notnull (See 4.6.2.4.2 Post-

Conditional arguments)

• Another type are in the form of ‘boolean expressions’ and ‘boolean queries’. These can consist of ‘elements’ and

‘conditional operators’ (see below) (unlike ‘boolean operators’!). In its basic form, without ‘boolean operator’ they can

be used directly as pre-conditional arguments (as in all versions of the program older than V2.1.9)

If combined with ‘boolen operators’ they must be enclosed by [] ! See 4.6.2.3 Boolean Expressions…

Syntax :

'compare-this-element' operator "to-this"
− 'compare-this-element': The element to evaluate. Enter the name of the element enclosed by ''. If omitted, the element-

to-modify is taken. In the case of numerical operators > < >= and <=, the element entered will be converted to a

floating point number (the floating point conversion of the first number in the string - or 0 (zero) if it does not contain

any numerical value)

− operator : one of the conditional operators listed below

− to-this : A "string" (enclosed by " ") or an 'element' (enclosed by ' '), in which case it will be expanded to the value of

the element. These to-this strings may contain wildcards (see 4.2.6 String matching / wildcards)

The following conditional operators can be used:

= string, equal ?, ignore (lower or upper) case , this operator is default and the = character can be omitted

== string, equal ?, match case

~ string, contains ?, ignore case

~~ string, contains ?, match case

not added to one of the operators above (not= not== not~ and not~~) reverses the result

> numerical, more ?

< numerical, less ?

>= numerical, more or equal ?

<= numerical, less or equal ?

A few examples:

'element' "abc" result 'true' if the value of element is abc or Abc etc

'element' == "abc" result 'true' if the value of element is abc, false if Abc etc

'element' ~ "abc" result 'true' if the value of element contains abc or ABC etc

'element' ~~ "abc" result 'true' if the value of element contains abc, false if ABC etc

'element' not ~ "abc" result 'true' if the value of element doesn't contain abc

'element' "" result 'true' if the value of element is "" (empty)

'element' 'other-element' result 'true' if the value of element is the value of other-element

'element' ~ 'other-element' result 'true' if the value of element contains the value of other-element.

Examples in a pre-conditional argument, when 'element' is left out and the element to modify is taken :

element.modify {addstart('other-element')|abc} 'true' if the value of element is the value

of other-element, then abc will be added.

element.modify {addstart(not ~ "abc")|abc} 'true' if the value of element doesn't contain abc, then abc will be

added.

element.modify {addstart("")|abc} 'true' if the value of element is "" (empty), then abc will be added.

Example of numerical conditional arguments:

'element' < "10" 'true' if the first numerical value in element is < than 10. E.g. if element = "Episode 9"

 Note that these numerical values must be entered as string, enclosed by " " !!

4.6.2.2 Boolean Operators

Used in combination with more than one ‘boolean entity’ in ‘boolean expressions’. (see 4.6.2.3 Boolean Expressions) The

choice :

• & The ‘and’ function, as in [this boolean entity] [that boolean entity] &

• \| The ‘or’ function

(note : must be entered in escaped form \| because the | is already in use as element separator)

• ^ ‘xor’ function

• ! The ‘not’ function.

4.6.2.3 Boolean Expressions

A combination of ‘boolean entities’ and (optional) ‘boolean operators’ which will after evaluation result in a boolean value

‘true’ or ‘false’. Note that a single ‘boolean entity’ without a ‘boolean operator’ is the simplest form that meets that

definition!

The syntax is based on RPN (Reverse Polish Notation), as also used in operations ‘calculate’ (see 4.6.4.5 Calculate) This

36

avoids the need of specifying the order of evaluation by means of () .

Syntax examples:

1. The simplest, a single boolean entity (without a boolean operator there is no need to enclose by []):

BE
2. Another simple one, just to ‘inverse’ the value of BE:

[BE] !
3. With just 2 Boolean entities:

[BE_1] [BE_2] BO
4. Reverse the result of 2 :

[BE_1] [BE_2] BO !
5. A complex one:

[BE_1] ! [BE_2] BO_1 [BE_3] BO_2 !
• BE is a Boolean Entity

• BO is a Boolean Operator & \| or ^ (see 4.6.2.2)

Note : not ! , that’s is special. (see **)

• All elements of a boolean expression must be separated with spaces !

• Boolean Operators always need 2 (not more, not less!) boolean values as ‘input’. (see ***)

** ! is special because it can only invert one boolean value, while the other BO’s always need two.

*** Not allowed: [BE] BO or [BE_1] [BE_2] [BE_3] BO

An example of 4. And what it does .. :

 ['global_temp_1' ~ "season"] ! ['title' ""] \| ['subtitle' not ~ "episode"] & !

1. This first evaluates ['global_temp_1' ~ "season"] , suppose value ‘false’ and inverses this with ! to ‘true’

2. Then evaluates ['title' ""] , suppose ‘title not ‘empty’ so ‘false’

3. Then evaluates ‘true’ ‘false’ \| (‘result of 1’ ‘result of 2’ ‘or’) result ‘true’

4. Next evaluates ['subtitle' not ~ "episode"] , suppose ‘subtitle’ contains the word “episode” so ‘false’

5. Evaluates ‘true’ ‘false’ & (‘result of 3’ ‘result of 4’ ‘and’) result ‘false’

6. The final ! inverses result 5, final result ‘true’

4.6.2.4 Conditional Queries

4.6.2.4.1 Pre-Conditional arguments

‘Boolean Entities’ and ‘Boolean Expressions’ can be used as argument in operations. They function as a condition, if the

resulting value is ‘true’ the operation will be executed. In this form, these conditions will be evaluated before the operation

is executed, hence the name ‘pre-conditional argument’.

Examples:

- With just a simple ‘boolean entity’ ==”Close”

 index_title.modify {set(== "Close")|Channel Off Air}

Evaluates if index_title is “Close” , case sensitive, if true, sets index_title to “Channel Off Air”

- With a ‘boolean expression:

episode.modify

 {replace(['global_temp_1' ~ "season"] ! ['title' ""] \| ['subtitle' not ~ "episode"] & !) |s|’global_temp_1’}

Evaluates the boolean expression similar to the one in example 4 of chapter 4.6.2.3 , if true, replaces the characte ‘s’ in

element ‘episode’ with the value of ‘global_temp_1’.

4.6.2.4.2 Post-Conditional arguments

These conditions will only be evaluated if the pre-conditions are true (or left out).

Values : either anycase, null or notnull

− anycase (default) : the operation will be performed regardless any of the conditions described below.

− null : the operation will only be performed if the element is empty
 (in the case of addstart and addend commands)

− notnull : the operation will only be performed if the element is not empty in the case of addstart and addend
 commands

 : the operation will not be performed if the element will become empty during/through the operation

 in the case of replace and remove commands

4.6.2.4.3 The ‘if’ and ‘if – else’ queries

This allows to group a number of operations that then will be executes under the same condition.

Syntax:

37

if {(boolean expression)|end}
 any number of operations

end_if
with optional else

if {(boolean expression)|end}
 any number of operations

else (optional boolean expression)
…. any number of operations

end_if
- boolean expression as in 4.6.2.3 Boolean Expressions or in its simplest form just a boolean entity as in 4.6.2.1 Boolean

Entities

- ‘else’ is optional . If else without boolean expression, it will be true if the ‘if’ boolean expression is false.

- When there is an ‘else’ boolean expression it will be evaluated only if the ‘if’ boolean expression is false.

 Separate else and the Boolean expression wih a space!

- The ‘if’ querie can be nested inside a loop (4.6.3 Loops) and also a loop can be used inside an ‘if’ or ‘else’.

Note: May also be entered without end_if when lines is the number of if operations + number of else operations:

(see 4.6.3 Loops for more details about this syntax option):

if {(boolean expression)|lines}
….lines number of operations

4.6.3 Loops

4.6.3.1 Conditional loop

Loops allow to run a set of operations for a number of times or until a certain condition is met.

The syntax:

loop {(optional-boolean_expression optional-max)|lines}
….‘lines’ number of operations

or

loop {(optional-boolean_expression optional-max)|end}
…. any number of operations

end_loop
• (optional) boolean expression : As in 4.6.2.3 Boolean Expressions E.g. 'description' ~ "abc" . Must be true while the loop

is running, when false the loop ends and the operations continue after the last line of the loop. Any of the pre-

conditional-arguments (as in 4.6.2.4.1 Pre-Conditional arguments) can be used to specify this condition. When no

condition is specified its value is assumed true.

• (optional) max : E.g. max=6 . Can be used to set the number of times the loop will run if no condition is specified or

when the loop doesn't end with a condition value false before reaching this max value. If max is not specified its default

value is assumed 100. This value is 'zero' based, hence max=6 will run the loop 7 times.

• lines : The number of lines (following the line specifying the loop) that are contained in the loop.

• end : Alternative to lines specify the word end in combination with end_loop after the last line that belongs to the loop.

A simple example to illustrate:

element.modify {addstart|10}

loop {('element' > "0" max=20)|end}

element.modify {calculate|1 -}

end_loop

This loop will subtract 1 from element until condition 'element' > "0" is false, which happens if it reaches 0. The value of

max=20 will not be reached.

4.6.3.2 Each – loop

This loop runs for each of the instances of a multi value element.

The syntax:

loop {(each "target element" in 'source element' optional-max)|lines}
‘lines’ number of operations

or

loop {(each "target element" in 'source element' optional-max)|end}
any number of operations

end_loop

38

• target element : E.g. "temp_2" , the element which will get the value of the actual instance of the source element. The

element name must be enclosed by " " (to disable expansion into its actual value).

• source element : A multi value element enclosed by ' ' (to force expansion into its values).

• lines, end, (optional) max,: Same as above (4.6.3.1)

Example (from tvdb.com.bing.ini, to set the preferred language):

loop {(each "mdb_temp_1" in 'mdb_show_id' max=50)|end}

mdb_temp_4.modify {addend|'mdb_temp_1'/all/fr####} * change this line to set your prefered language!!

mdb_temp_5.modify {addend|'mdb_temp_1'/all/en####} * leave this as it is!

end_loop

4.6.4 The modify commands

4.6.4.1 Replace

Relevant argument : type

• Without type argument or with type=string (default) it performs a replacement of all occurrences of the string value of

expression-1 in the element to modify with that of expression-2. These expressions may contain text, elements and

scrubstrings components (see 4.6, expression_1 and expression_2 components).

• Expression-1 may also contain indices if combined with a type=char,word,sentence,paragraph or element argument

(see4.6.1.4 Expression-1 with indices)

• or regular expressions (see 4.6.1.5 Expression-1 with 'regular expressions') with a type=regex argument.

Note: In the latter case (regex) the replacement is selective (only the matched string on the position where it matches

is replaced)!!

Examples:

o rating.modify {replace(null)|TODOS LOS PÚBLICOS|todos} , replaces the string TODOS LOS PÚBLICOS in element

rating by the string todos.

o rating.modify {replace(type=word)|2|NIÑOS} , replaces the third word with NIÑOS, result TODOS LOS NIÑOS

!! When replacing sentences (type=sentence) or paragraphs (type=paragraph) make sure to add the sentence

separator (.) or the paragraph separator (\n \r or \n\r) to expression-2.

o Example of the selective replace with type=regex:

Suppose the following text in a description: The third year of the third century.

This contains two strings third. The following replace command only replaces the first one.

description.modify {replace(type=regex)|”The\s(third)\s year”|3rd}

Result : The 3rd year of the third century.

4.6.4.2 Remove

Relevant argument : type

The command remove comes in three variants depending on the argument type:

• Without argument type or with type=string, it removes all occurrences of the string value of expression-1 from the

element to modify. As with the command replace, the expression-1 may contain text, elements and scrubstrings

components.

Example:

title.modify {remove(notnull type=string)|: 'subtitle'} * removes the value of element subtitle in title after the colon : ,

which is also removed.

Suppose {single|<span id=programmeheading|: ||
} is the scrubstring for the subtitle element, the next

gives the same result:

title.modify {remove(notnull)|: '{single|<span id=programmeheading|: ||
}'}

• With expression-1 containing indices, combined with argument type=char , word , sentence , paragraph or element. In

this case the part of the element, determined by the indices will be removed. (see 4.6.1.4)

• With expression_1 containing regular expressions (see 4.6.1.5) and type=regex.

4.6.4.3 Substring

Relevant argument : type

• The command substring extracts parts of an element determined by the indices in expression-1. The result is the

opposite of remove when this is used with indices. The argument type with one of the values char, word, sentence,

paragraph or element is required (see 4.6.1.4)

• or expression-1 containing regular expressions together with type=regex (see 4.6.1.5)

• substring doesn’t work without type argument or with type=string

Examples:

rating.modify {substring(type=word)|0 1} , replaces the rating value by the value of its first word.

rating.modify {substring(type=regex)|"\A(\w+?)\s+"} , does the same but using type=regex

39

4.6.4.4 Addstart and Addend

These commands simply add the result of expression-1 to the element-to-modify. With these commands indices in

expression-1 are not supported.

Element.modify {addstart(optional arguments)|expression_1}

Element.modify {addend(optional arguments)|expression_1}

4.6.4.5 Calculate

This command allows simple arithmetic calculations. Supported are + (add) - (subtract) * (multiply) / (divide). Furthermore

four special calculations are supported; # (count, see 4.6.4.5.1), @ (index-of, see 4.6.4.5.2), date and time calculations

(see 4.6.4.5.3) and bitwise calculations (see 4.6.4.5.4)

Its syntax is based on RPN (Reverse Polish Notation), which differs from the standard a + b and uses a b + . Its advantage

is that it avoids complex syntax like (a + b) * c which cannot be expressed without () in the standard way. In RPN it is

simply a b + c *

However, because it is thought that more complex calculations will seldom be necessary only a simplified version of RPN is

implemented. Like the standard (a + b) * c / (d - e) would be a b + c * d e - / in full RPN. Here we must do that in three

steps: (step-1) a b + c * then (step-2) d e - then (step-3) result-1 result-2 /

Relevant arguments: format

o Numeric formats: Supported values are all the standard numeric format strings F and D, as described in

http://msdn.microsoft.com/en-us/library/dwhawy9k.aspx like format=F0.

Default is F2 (two decimal digit fixed point, like 16.35).

o Date and Time formats: format=time, format=date and format=timespan used in 4.6.4.5.3 Date and time calculations

o Converting formats: Performs a conversion.

format=chartodec Returns the decimal presentation of a char. If the input element is longer that 1 character it will

concate all converted chars into one long string.

The syntax of calculations:

Element.modify {calculate (optional arguments)|RPN expression}
Element.modify {calculate (optional arguments)|'element' RPN expression}

It can also be used without any RPN expression; in that case the element value is only converted to a numeric value in the

format specified by the format argument:

Element.modify {calculate (optional arguments)}
Or with the input in another element

Element.modify {calculate (optional arguments)|'element'}

The output format of a calculate operation is determined by the following (optional) argument format (see above)

A few examples :

• temp_1.modify {calculate(format=F2)|'temp_1' 240 /}

Divides temp_1 by 240 and assigns the result back to temp_1. If temp_1 is not a numeric string, its value will be zero.

If it contains numeric string(s), its value will be the value of first numeric string in it. For example suppose temp_1 has

the value width=576px, it will be converted into 576 and the result will be 2.40

In this first example the element to modify temp_1 is the same as the element from which the value is used. In that

case the following is the same:

temp_1.modify {calculate(format=F2)|240 /}

• temp_1.modify {calculate(not "0" format=F2)|2 +} Adds 2 to temp_1 if temp_1 is not "0". Uses the pre-conditional

expression not "0" , see 4.6.2.4.1 Pre-Conditional arguments

• temp_1.modify {calculate(format=chartodec)} Converts the input string in temp_1 in its decimal representation in a

concatenated string of numbers. E.g. if temp_1 is 'a' the result is 097 , if 'ab' result 097098, etc.

4.6.4.5.1 # Count

Relevant arguments : type, format

It will return the number of occurrences that a certain string is contained in an element.

Count comes in two variants, Occurance and Length:

1. Without argument type or with type=string
Occurrence:
Returns the number of occurrences that a certain string is contained in an element.

The syntax:

element.modify{calculate(optional-arguments)|'other-element' string #} or
element.modify{calculate(optional-arguments)|string #}

http://msdn.microsoft.com/en-us/library/dwhawy9k.aspx

40

• 'other-element' : the element in which the number of occurrences of "string" is counted. If 'other-element' is

omitted the element to modify is evaluated for the occurrence of "string".

• string : if entered as string value, like "; " it must be enclosed by "" to allow spaces in it. It can also be entered as

'element' , enclosed by '', like 'title', in which case the number of occurrences of the value of that element will be

counted.

• # : the operant for count.

Example of occurrence:

starrating.modify {calculate(format=F0)|"*" #}

 This will count the number of * characters in starrating and assign that value to it in the F0 format (0 decimal

digits). Suppose starrating is ***, then after this operation it will become 3

2. With argument type values char, word, sentence, paragraph or element
Length:
Returns the length of the element.
The syntax:

element.modify{calculate(type=xx optional-arguments)|#} or

element.modify{calculate(type=xx optional-arguments)|'other-element' #}
• If type=char, the length returned is the number of characters in element or other-element. Similarly, if type=word,

sentence, paragraph or element length is the number of words, sentences, paragraphs and element values

respectively.

4.6.4.5.2 @ Index-of

Relevant argument : type, format

This will return the starting position (index) of a certain string contained in an element. The result is 'index based' (starting

with 0) The syntax:

element.modify{calculate(optional-arguments)|'other-element' string @} or
element.modify {calculate(optional-arguments)|string @}

• 'other-element' : the element in which start location of "string" is determined. If 'other-element' is omitted the element

to modify is evaluated for the location of "string".

• string : if entered as string value, like "; " it must be enclosed by "" to allow spaces in it. It can also be entered as

'element' , enclosed by '', like 'title', in which case the start location of the value of that element will be returned.

• @ the operant for the index-of . If "string" occurs more than once it will return the start position of the first occurrence.

If prefixed by a minus-sign, like -@ , the start position of last occurrence will be returned.

• (optional) argument type : See 4.6 arguments.

It specifies the index-base. Possible values are:

o type=string (default, the result is returned as string position) Which is normally the same as :

o type=char (the result is returned as character positions),

o type=word (the result is returned as word positions),

o type=sentence (the result is returned as sentence positions),

o type=paragraph (the result is returned as paragraph positions) and

o type=element (the result is returned as element positions)

Note: If the "string" doesn't occur in the element, -1 will be returned. Also, note that with types word, sentence and

element, if in a word, sentence or element, the "string" is contained, the index position of it is returned.

Example: an element with value "the quick brown fox" and a "string" with value "own" . If :
type=char : result = 12

type=word : result = 2 (from the word : brown)

type=sentence : result = 0 (this sentence contains string "own")
type=element : result = 0 (this element has only one value which contains "own")

4.6.4.5.3 Date and time calculations

Relevant argument : format

• With Date and Time calculations it is possible to add or subtract a timespan from date, time or timespan values.

• It can also be used to convert to - and format of - date, time and timespan values. If the input string is, or contains a

numeric value, it automatically converts it to a date, time or timespan in the specified or default format. (see also

further down in this section)

• It will also automatically convert numeric input values into date, time or timespan values.

• And, it can convert a date/time into another timezone

Its syntax:

element.modify {calculate(opt.args. format=time/date/timespan)|timespan +/-}
or

41

element.modify {calculate(opt.args. format=time/date/timespan)|'element' timespan +/-}
or

element.modify {calculate(opt.args. format=time/date/timespan)}
or

element.modify {calculate(opt.args. format=time/date/timespan)|'element'}
or with the timespan in an element:

element.modify {calculate(opt.args. format=time/date/timespan)|'element' 'element' +/-}
or to convert a time to another timezone:

element.modify {calculate(timezone=timezone_id)}
• timespan (optional): The timespan to add or subtract. In the place of this timespan an element with the value and

format of a timespan can be used if enclosed by ' .

• If specified without timespan and +/- operator, the result is the date - or time - formatted value of the input value. (See

below, argument format, for details about date, time and timespan formats and date-time format strings)

• +/- operators

• 'element' (optional): Contains the input value. If omitted the input value is taken from the element to modify.

• 'element' can also be one of the date/time read-only elements 'urldate', 'now' or 'showdate' (see APPENDIX C Read-

only elements). Its expanded value will be formatted conform the format argument value.

• timezone_id : A timezone id as used specified in 4.2.7 TimeZones

• The resulting format of a date-time calculation is determined by argument format:

o format=date and format=time these will convert the numeric value

in HH:mm and yyyy/MM/dd respectively as default date-time format. For other formats, add a comma and date-time

format string after the word time or date, like format=time,h:mmtt or

format=date,dd/MMMM/yy or format=date,”dd/MM/yyyy HH:mm” (enclose between “” if the formatstring contains

spaces!)

See http://msdn.microsoft.com/en-us/library/8kb3ddd4.aspx for date/time format strings.

o Extra Date formats: Besides these standard date formats the following numeric date formats are supported:

▪ format=date,vba Returns the excel-vba day-number, as used in MS-Office

▪ format=date,unix Returns the number of seconds from 1970/01/01 00:00 UTC

▪ format=date,java Returns the number of milliseconds from 1970/01/01 00:00 UTC

▪ format=date,ticks Returns the number of 100 nanosecond units fom 00/00/00 00:00 UTC

▪ Adding utc as prefix, like format=utctime or utcdate will return the utc time or date (ignoring the timezone utc

offset)

o format=timespan: allows conversion and calculations of timespans. The default format is in days and will result in a

string d:h:m

(Note 1: These timespan value formats differ from the ‘Standard TimeSpan Format’ : d.h:m)

When specified as format=timespan,hours a string h:m is the result.

(Note 2: That the value is not changed! If the timespan value is more than 1 day, the day part is omitted.

o Finally there is format=productiondate. When entered it will return the first 4 digit numeric value it finds in string-1

that is between 1900 and 'nextyear'.

Example: productiondate.modify {calculate(format=productiondate)|'description'}

• Numeric input values, default date-time and timespan units and conversions:

o Decimal (day) time values, like 16.35 will be converted into time value 16:21

o Decimal timespan values (at least 1 decimal!!) are considered hours, like 16.35, will be converted into :

16:21 (h:m) for format=timespan,hours and

0:16:21 (d:h:m) for format=timespan,days

o Integer timespan values are considered to be in minutes:

 like 80 will be converted into 1:20 (h:m) or 0:1:20 (d:h:m)

and 1520 will be converted into 1:20 (h:m) or 1:1:20 (d:h:m)

o Integer date values in VBA day-number format as used in MS-Office

 E.g. 40787 will be converted to 2011/09/01

o Integer datetime values in UNIX date format (Seconds counting from 01/01/1970).

 E.g. 1314866400 will be converted into 8:40 or 2011/09/01 or 2011/09/01 8:40

o Integer datetime values in JavaScript date format (1ms units counting from 01/01/1970).

 E.g. 1314866400000 will be converted into 8:40 or 2011/09/01 or 2011/09/01 8:40

o Integer datetime values in .NET ticks format (100ns units counting from 01/01/0001).

 E.g. 634504632000000000 will be converted into 8:40 or 2011/09/01 or 2011/09/01 8:40

• Non numeric input values

o Non numeric timespan values supported are d:h:m and h:m

http://msdn.microsoft.com/en-us/library/8kb3ddd4.aspx

42

o Non numeric Date-time values must follow the format of Standard datetime format strings

Examples:

• Add a timespan to a time:

element.modify {calculate(format=time)|2:15 +} gives the following results:

If element = 16:20 —-> 18:35

If element = 6.5 —-> 08:45 (the numeric value 6.5 is first converted to 6:30)

If element = 23.25 —-> 01:30

• Convert a decimal to time:

element.modify {calculate(format=time,HH:mm)}

If element = 12.33 —-> 12:20

• Convert an integer to timespan:

element.modify {calculate(format=timespan,days)}

If element = 265 —-> 0:4:25

element.modify {calculate(format=timespan,hours)}

If element = 265 —-> 4:25

• Convert a decimal to timespan:

If element = 7.23

element.modify {calculate(format=timespan,days)} —-> 7:5:31

element.modify {calculate(format=timespan,hours)} —-> 7:13

• Subtract a timespan from a date:

element.modify {calculate(format=date,yyyy/MM/d H:mm)|1:5:30 -}

If element = 2011/11/15 9:55 —-> 2011/11/14 4:25

If element = 1314866400 —-> 2011/08/31 3:10

(the numeric UNIX date value 1314866400 is first converted to 2011/09/01 8:40)

• Convert a date into Unix date format:

element.modify {calculate(format=date,unix)}

If element = 2011/11/15 9:55 —-> 1321350900

• Timespan days:

element.modify {calculate(format=timespan,days)|1:17 +} (h:m !)

If element = 7.23 —-> 0:8:30 (Legacy_Mode 8:22:31) (decimal timespan values are hours)

If element = 2:50 —-> 0:4:7 (Legacy_Mode 5:19:0) (h:m timespan input)

If element = 1520 —-> 1:2:37 (Legacy_Mode 2:18:20) (integer timespan values are minutes)

• Timespan hours:

element.modify {calculate(format=timespan,hours)|1:17 +}

If element = 7.23 —-> 8:30

If element = 2:50 —-> 4:7

If element = 265 —-> 5:42

If element = 1520 —-> 2:37 (actual value 1:2:37 , format in hours leaves out the days!)

• Timespan conversion, days:

element.modify {calculate(format=timespan,days)}

If element = 7.23 —-> 0:7:13 (Legacy_Mode 7:5:31)

If element = 1520 —-> 1:1:20

• Timespan conversion, hours:

element.modify {calculate(format=timespan,hours)}

If element = 7.23 —-> 7:13

If element = 265 —-> 4:25

• Timespan from subtracting two times

t1 and t2 must be (converted?) in unix, java or ticks format

element.modify {calculate(format=timespan,hours/days)|t1 t2 -}

If t1 = 1485591900 and t2 = 1485475200 (unix) —-> 8:25 (hours) or 1:8:25 (days)

• Convert a time into another timezone

element.modify {calculate(timezone=Africa/Mogadishu)}

If site{timezone=Atlantic/Canary} and element=1485475200 (unix) ----> 26/01/2017 21:00:00

• Convert ‘config_timespan_days’ to a timespan

‘config_timespan_days’ is a ‘readonly’ element (see 4.5.3 Special elements) , when used it just returns its ‘zero’ based

integer value. The program will convert this to a timespan value in format d:0:0

https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-stringsStandard

43

Suppose <timespan>2</timespan> in config:

element. modify {calculate(format=timespan,days)|'config_timespan_days'} —-> 3:0:0

• Suppose a site allows to grab more than one day of index pages at once. For that it is required to specify the start and

stop date in the url_index. Calculating and formatting this stop time can be done as follows:

Convert the ‘config_timespan_days into d:h:m timespan format:

index_variable_element.modify {calculate(format=timespan,days)|'config_timespan_days'}

Add this to ‘urldate’ :

index_temp_1.modify {calculate(debug format=date,"yyyy/MM/dd")|'urldate' 'index_variable_element’ +}

• index_start.modify {calculate(format=time)|'previous_start' 'index_temp_1' + 'previous_index_temp_2' +}

Use of the previous_start and previous_index_temp_2 elements . In it, the value of the 'same' element is stored of the

'previous' show. (see 4.5.4 Read_only elements, and 4.5.2).

Another syntax that might come in handy by occasion, is when the 'element' containing the input data is replaced by a

constant. This must be done by adding '>> ' (two forwards arrows and a space) to the constant, like this:

 element.modify {calculate(format=time)|3:22>> 3:12 +} result —-> 6:34 or

 element.modify {calculate(format=timespan,days)|32.35>> } result —-> 1:8:21

Note: Legacy Mode : The methods and the way they work refelect all versions of the program from V2.1.8 and later. Older

versions will give different results, especially when timespan elements are part of the operations. The reason for this change

is that, in those earlier versions, argument format had influence both on input values and on output values in the same

operation. That was confusing and in contrast with all other format arguments which only influence output values and

formats, as they should.

To keep compatibilty and to keep older excisting SiteIni’s working, the program can operate in ‘Legacy Mode’. That will be

automatically activated if the value of @MinSWversion in the 4.1.1 SiteIni header is V2.1.7 or lower.

4.6.4.5.4 Bitwise Calculations

The program supports the most common operators for this type of calculations : and, or, xor, shiftl (left shift), shiftr (right shift)

and not.

Examples:

Assume element has the value 187

element.modify {calculate(format=F0)|32 and} * result element=32

element.modify {calculate(format=F0)|4 or} * result element=191

element.modify {calculate(format=F0)|85 xor} * result element=238

element.modify {calculate(format=F0)|1 shiftl} * result element=374

element.modify {calculate(format=F0)|2 shiftr} * result element=46

element.modify {calculate(format=F0)|not} * result element=68

It is also allowed , as with most other operations, to specify the source and target elements separately

target_element.modify {calculate(format=F0)|’element’ 4 or} * result target_element=191

All relevant optional arguments like debug and conditionals are allowed.

4.6.4.6 Cleanup

This can be useful to tidy-up the result of a scrubbed element. It:

• tries to remove remaining html tags. (see also the argument tags= further down this section)

• replaces newline \n and tabs \t characters by a space.

• removes carriage returns.

• replaces multiple spaces by single spaces

• removes leading and trailing spaces

• removes illegal xml characters

• restores Unicode character sequences like \\u00e6 to the actual chars

• restores special html characters above char 127 , like ä to the actual char ä by default

• performs optional upper– and lower case conversions depending on the style argument.

Note that it is allowed to add newline \n and tabs \t to elements with the addstart, addend and replace command. If a

cleanup is executed after this is done, they will be removed again. Cleanup should be executed before these operations in

such cases. Its syntax:

Element.modify {cleanup(optional arguments)}
• Relevant arguments:

o style, The style argument can be added to specify the required style of the cleanup result.

Possible values are :

44

▪ style=sentence

▪ style=name

▪ style=upper (convert to UPPERCASE) and

▪ style=lower (convert to lowercase)

▪ style=regex (formats the input into a regular expression, inserts the required escape characters)

▪ style can also be used to convert the input string (see 4.6.4.6.3 Cleanup as string converter)

o removeduplicates (see 4.6.4.6.1 Cleanup with argument removeduplicates) and

o tags (see 4.6.4.6.2 Cleanup with argument tags.)

4.6.4.6.1 Cleanup with argument removeduplicates

To remove 'duplicate' members of multivalue elements. This is especially helpful in the result of showsplits when

overlapping index_pages lists the same show double. Unfortunately, very often the listing of these ‘duplicates’ are not

completely the same. A whole set of dedicated arguments allow to locate the exact duplicates.

By default two (or more) elements are defined as duplicate if, when compared, the resulting matching-factor is higher than

the titlematchfactor (as described in 4.3 titlematchfactor) specified in the SiteIni.

Its syntax:

Element.modify {cleanup(removeduplicates optional-dedicated-arguments)}
• argument removeduplicates : To further specify how the program decides if elements are considered duplicates a string

can be added in this way : removeduplicates=string

o This string specifies the algorithm and (optional) the matching factor that is used to determine duplicates. Possible

values are :

▪ equal (default), doesn't use any special measures apart from the matching-factor.

▪ title , ‘title-match’ uses a case insensitive comparison excluding certain abbreviations that is also used to

compare index_title with the xmltv title as part of the incremental update process (see 4.5.1, index_title).

▪ name , ‘name-match’ uses a special comparison method to compare names. This can be useful to remove

duplicates in credit elements such as actor. It finds duplicates like John Doe and J. Doe.

Optionally, together with this string , a different matching-factor than the default, can be specified.

Examples:

- removeduplicates=name,50

- removeduplicates=equal,70 etc.

• Optional dedicated arguments :

o link : Specifies another multivalue element from which its members must be removed on the same position as the

duplicates found in the element. A typical example is the linked elements index_site_id and index_site_channel.

E.g. : index_site_id.modify {cleanup(removeduplicates=equal,100 link="index_site_channel")}

o span : optional. Default: span=all. Specifies how far from each other in the input array the duplicates are accepted

as duplicates. E.g. if span=1 only duplicates next to each other are accepted. This helps to remove duplicates from

index_showsplit that resulted from index pages overlaps. Without this in some cases also shows that happen daily

on the same time will be removed.

E.g. : index_site_id.modify {cleanup(removeduplicates=equal,100 link="index_site_channel" span=1)}

o keepfirst or keeplast : Default keepfirst. Specifies which of the duplicates to keep after removal of the others.

E.g. : index_showsplit.modify {cleanup(removeduplicates span=2 keeplast)}

4.6.4.6.2 Cleanup with argument tags.

Without this argument cleanup removes strings enclosed by < and > of less than 15 characters. A more complete,

programmable removal of 'tag like' string components in the element can be achieved using the argument tags. Its syntax:

element.modify {cleanup(tags="start-string""end-string")}
• start-string . The string (or a single character) which defines the start of the 'tag' to be removed.

• end-string . The string (or a single character) which defines the end of the 'tag' to be removed.

The removed string includes start and end string.

Examples:

description.modify {cleanup(tags="<"">")} The simplest form, removes everything between < and >

description.modify {cleanup(tags="<a class""")} Removes everything between <a class and

description.modify {cleanup(tags="\"http://""\" .")} Removes everything between "http:// and " .

A further option is to remove strings at the beginning or end of the element. For strings at the beginning use

tags="/=string" and for at the end tags="string=/"

Example:

description.modify {cleanup(tags="/=\"")} removes a " at the beginning of the description.

45

4.6.4.6.3 Cleanup as string converter

Converts a string into another string encoding format.

Relevant argument : style

▪ style=urlencode and urldecode

▪ style=uniencode and unidecode

▪ style=jsondecode

▪ style=htmlencodespecialchar and style=htmldecodespecialchar

▪ style=sha256encode and style=md5encode

▪ style=base64encode and style=base64decode

▪ style=roman2arabicnumeral

A few examples:

• urlencode

element.modify {set|query:find?subject=this is my subject}

element.modify {cleanup(style=urlencode)}

result: query%3afind%3fsubject%3dthis+is+my+subject

• and urldecode

element.modify {set|query%3afind%3fsubject%3dthis+is+my+subject }

element.modify {cleanup(style=urldecode)}

result: query:find?subject=this is my subject

• uniencode

element.modify {set|abcde}

element.modify {cleanup(style=uniencode)}

result: \u0061\u0062\u0063\u0064\u0065

• and unidecode

element.modify {set|\u0061\u0062\u0063\u0064\u0065}

element.modify {cleanup(style=unidecode)}

result: abcde

remark: In the later versions of the program, cleanup without argument style=unidecode, will have the same result!

• htmlencodespecialchar

element.modify {set|Test}

element.modify {cleanup(style=htmlencodespecialchar)}

result: Test

• and htmldecodespecialchar

element.modify {set|Test}

element.modify {cleanup(style=htmldecodespecialchar)}

result: Test

• jsondecode

in json the escape chars:\" \\ \/ \b \f \n \r \t

are represented by :\\\" \\\\ \\\/ \\\b \\\f \\\n \\\r \\\t

Use jsondecode to restore the escapes:

element.modify {set|\{"id": "A\\\\1","name": "A \\\"green\\\" door"\}}

element.modify {cleanup(style=jsondecode)}

result: {"id": "A\\1","name": "A \"green\" door"}

• base64encode

element.modify {set|abcde}

element.modify {cleanup(style=base64encode)}

result: YWJjZGU=

• base64decode

element.modify {set|YWJjZGU=}

element.modify {cleanup(style=base64decode)}

result: abcde

With formatting 'decimal' :

element.modify {cleanup(style=base64decode,decimal)}

result: 97|98|99|100|101

file://///t

46

• encryption encoders

sha256encode

element.modify {set|abc}

element.modify {cleanup(style=sha256encode)}

result: BA7816BF8F01CFEA414140DE5DAE2223B00361A396177A9CB410FF61F20015AD

and md5encode

element.modify {set|abc}

element.modify {cleanup(style=md5encode)}

result: 900150983CD24FB0D6963F7D28E17F72

• convert roman numerals to arabic

element.modify {set|CXIV}

element.modify {cleanup(style=roman2arabicnumeral)}

result: 114

It is also able to convert these roman numbers as part of a string:

element.modify {set|season VI episode XIV/XX}

element.modify {cleanup(style=roman2arabicnumeral)}

result: season 6 episode 14/20

4.6.4.7 Clear

A simple command to clear the content of an element.

Syntax :

Element.modify {clear(optional arguments)}

Note: This command is internally substituted for a remove command , which does exacltly the same:

element.modify {remove(type=element)|0}

4.6.4.8 Select

The use of ‘Boolean Entities’ (see4.6.2.1 Boolean Entities) offer a way to select an element with the operators = ~ But that

may be simple for a single element but to select certain members from a multi value element involves to step through all

the members in a loop and examining each member individually. This is not only time consuming but also requires a lot of

lines in the SiteIni.

The command select makes this a lot easier and faster. It can be applied directly to multi value elements. Its syntax:

element.modify {select(optional arguments)|string operator}
• string: The string for which the members of element are to be selected.

 Must be enclosed by " ". May contain elements to expand.

 Examples:

 "This string"

 "This 'index_temp_1'" (index_temp_1 will be expanded to its value)

 "'temp_1'" (also permitted is just 'temp_1' in this case)

• operator: The comparison operator. Must be one of the following:

 = string and member of element must fully match, case insensitive

 == string and member of element must fully match, case sensitive

 ~ member of element must contain string, case insensitive

 ~~ member of element must contain string, case sensitive

 /= member of element must start with string, case insensitive

 /== member of element must start with string, case sensitive

 =/ member of element must end with string, case insensitive

 ==/ member of element must end with string, case sensitive

And the more sophistigated ones:

 ?title string and member of element must match following the title-match algorithm and using the

 titlematchfactor as deciding factor

 ?name string same as ?title using the name-match algorithm

These ?title and ?name use the same algorithm as used in 4.6.4.6.1 Cleanup with argument removeduplicates,

title_match, name_match

Note!! Add not in front of any of the operators and the result will be reversed.

 E.g. not~~ will select all members that do not contain the string.

47

WARNING! Unlike other commands the following is not supported:

 element.modify {select(optional args)|'other-element' string operator}

4.6.4.9 Sort

Relevant arguments : target

Is an easy and fast way to sort the members of multi value elements by its value or a part of it. This command must always

be accompanied by a scrub string and/or an operation to define the value of the special element sort_by (see APPENDIX E).

Its syntax:

Element-to-sort.modify {sort(direction,for)}
and

sort_by.scrub {scrubstring with argument (target="element-to-sort")}
and/or

sort_by.modify {operation with argument (target="element-to-sort")}
• direction : Must be ascending or descending

• for : Must be string , integer or datetime

• target : Sets the link between the value of element sort_by and the element-to-sort

The sorting will be carried out using the value of sort_by , if properly linked to the element-to-sort with the argument

target= , using either a string-order if for =string or an integer-number-order if for= integer or a datetime-order if

for=date/time. In case of an integer or a datetime, the program will attempt to convert the value of sort_by to an integer or

a date/time. If that fails, the sorting will fail with a warning.

Example:

index_showsplit.modify {sort(ascending,string)}

sort_by.scrub {single(target="index_showsplit")|<activation_datetime>||</activation_datetime>|</activation_datetime>}

sort_by.modify {calculate(target="index_showsplit" format=date,unix)}

4.6.4.10 Set

A simple way to set an element to a value. It will replace any existing value.

Syntax:

element.modify {set(optional arguments)|value}
• value : The new value of element. May contain an 'element' to expand to its value.

Examples:

temp_1.modify {set|0}

temp_1.modify {set('description' not "")|'description'}

4.6.4.10.1 Set with argument type=run

Relevant argument : type=run

A way to run an external program which output is passed to 'element'

Any type of executable program, like .exe .bat .cmd etc can be used.

syntax:

element.modify {set(optional arguments type=run)|path of the external program|commandline
argument(s)}

• type=run Activates this option

• path of the external program Specify the path and name of the program to run. Can be specified as full path or relative

to the siteini file location.

• Commandline arguments of the program to run. More than one argument must be separated with a space.

Element will get the value of the output of the program to run that is written to the console. Therefor the program to run

needs to be programmed such that it only writes the result to the console and nothing else! (because everything written to

the console will be passed to 'element')

A small example to illustrate the procedure:

Suppose the following batch file b.bat in the same folder as the config file:

@echo off

set a="%1%"

set b="%2%"

set/a c=%a%+%b%

echo %c%

48

(It takes two arguments, %1% and %2% into a and b, adds them together in c, and writes the c to the console.)

And suppose this in the SiteIni:

temp_1.modify {set(type=run)|b.bat|5 7}

Result: temp_1 value 12

Or like this:

temp_1.modify {set(type=run)|b.bat|'temp_2' 7}

4.6.5 Examples of operations
• description.modify {addstart("")|no details} adds - no details - to an empty description

• description.modify {addstart(null)|no details} same as above, adds - no details - to an empty description

• subtitle.modify {addstart(not "")|Episode: } adds -- Episode: -- before the subtitle, but only if subtitle wasn't empty

before the action.

• rating.modify {replace("")|nine|9} replaces the word 'nine' in element rating by the number 9

• description.modify {replace(not "")|Afl.: 'subtitle'.| This episode:} replaces the subtitle listing like - Afl.:Heads Up. - in

the description by -- This episode: -- but only if the action doesn't replace the whole description.

• ratingicon.modify {addstart("")|'rating'.png} adds a ratingicon if the site doesn't list one.

• As an example of the use of a scrubstring in expression-1, consider the following html:

<p class="verhaal">Amerikaanse (USA) Drama uit 1995 van Taylor Hackford. Met: Kathy Bates, Jennifer Jason Leigh,

Judy Parfitt, Christopher Plummer e.a. Huishoudster Dolores wordt beschuldigd van de moord op haar vervelende en

veeleisende werkgeefster, bij wie ze al jarenlang in dienst was. </p>

<table style="width: 60%;">

<tr><th width="65">Genre</th><td>Film</td></tr><tr><th>Acteur</th><td>Kathy Bates, Jennifer Jason Leigh,

Judy Parfitt, Christopher Plummer</td></tr>

<tr><th>Regisseur</th><td>Taylor Hackford</td></tr>

</table>

This site lists the actors double, in the description after - Met: - and later following <th>Acteur .

To scrub the description and the actor we use:

description.scrub {single|<p class="verhaal">||</p>|<table}

actor.scrub {single(separator=","|<th>Acteur</th><td>||</td></tr>}

That leaves use with a description that contains all the actors which isn't perfect. However they can be removed with

the following:

description.modify{remove(null)|Met: '{single|<p class="verhaal">|Met:|e.a.|<table}' e.a.}

We cannot use the element actor in expression-1 as in

description.modify{remove(null)|Met: 'actor' e.a.}

because actor is not a single value xmltv element anymore due to the use of the argument — separator="," - in the

actor scrubstring.

We allow - null - to be sure that the actors listing is removed even if it is the whole description. We add the following

to have at least something in the description:

description.modify {addstart(null)|No details}

• An example with calculate and numeric boolean_entity as conditional argument:

Suppose the subtitle of a show is the first sentence in the description on the html detail page. So we use something like

:

subtitle.scrub {single(separator=". " include=first)|. }

However not all shows have a subtitle, consequently the result can also contain just the first sentence of the

description. To distinguish between subtitle and a normal sentence, count the words .. max 3 words is considered a

subtitle (or at least most probable)

temp_1.modify {calculate(not "")|'subtitle' " " #} * count the spaces

subtitle.modify {remove('temp_1' > "2")|'subtitle'} * clear subtitle if more than 3 words

description.modify {remove('temp_1' < "3")|'subtitle'} * remove the subtitle from the description.

5. Special Procedures and Tricks
5.1 Special procedures

5.1.1 How to configure a SiteIni file for a site using the POST Http protocol
To prepare and develop a SiteIni using the POST method of a Http request it is necessary to determine the required header

content. There are numerous ways to accomplish that, a simple one is to use the development tools of your internet

49

browser. All respectable web browsers have such tools to inspect the traffic. For Microsoft Edge it can be found under

Tools, select Developer Tools (F12), Network (Ctrl+4), Enable Traffic (F5). All traffic will be captured after this and can be

inspected. It is essential to familiarize with this tool. With it the required request headers including the postdata content (in

this tool called “Request Body”) can be determined and must be copied to the header specifications as described in 4.4.1.1

HTTP Headers, method GET, POST, POST_BACK, MULTIPART and SOAP

5.1.2 How to configure a SiteIni file for a site using the POST_BACK Http protocol
The POST_BACK request method has been extended with more functionality from WG++ version 3.0 or higher. It has

become a more universal way to specify the setup for a response that needs two httprequests . Therefore it now covers the

‘original’ POST_BACK protocol as described in previous version of this document. (See also 5.1.2.1) It also covers the

functionality of the ‘preload’ request, (see 4.4.3)

This new version of POST_BACK allows to specify the httpmethods used for each of the two requests.

Syntax (example for url_index):

url_index.headers {method=POST_BACK(GET,GET)}
* or (POST,GET) – (GET,POST) – (POST,POST)

• As in the previous version, a ’special’ build-in scrub procedure can be used to extract the required data from the

response of the first request for the second request. That can be postdata , as in the previous version , but also

header- or url variables .

• This ‘special’ scrub procedure is initialised when method=POST_BACK () is used and supports only temp, global

elements.

• If needed, the url of the first request can be modified to be used as the second url , e.g. with a set operation in scope

postback

• It also automatically saves the response cookies from the first request and reloads them for the second request (which

was the most common objective of the preload request)

• All headers, both for the first and the second request , must be specified using a headerset (see 4.4.1.1.1)

in scope urlindex. (not in scope postback !)

Example:

scope.range {(urlindex)|end}

url_index.headers {method=POST_BACK(GET,GET)}

urldate.format {datestring|yyyyMMdd}

url_index {url|https://first url}

url_index.headers {customheader=Accept-Encoding=gzip,deflate}

url_index.headers { … } *any other header

index_variable_element.scrub {regex||\"accessToken\" : \"(.*?)\"\,||} *we scrub a token in first url

url_index.headers {customheader=Authorization=|=Bearer 'index_variable_element'} *we specify adding the scrubbed

token for the second request using the separator | so to be shown in second request.

end_scope

*

scope.range {(urlindex)|end}

url_index.modify {set|https://second url} *we use scope postback to call up the second url.

end_scope

In case of a request POST,POST this will be specified in postadata, again using a separator:

url_index.headers {postdata=(payload for first request)|=(payload for second request)}

5.1.2.1 (depreciated) How to configure a SiteIni using the previous version of the POST_BACK Http

protocol

First: read 4.4.1.1. Different from a ‘regular’ POST Http request, is the postdata which specifies the requested content to

the server (site) is partly send to the client (in this case WG++) in response to a first request done using the GET method.

Any following requests (e.g. for following days) use the POST method with postdata derived from the data received in

response on the first GET request. WG++ follows a build in procedure when a POST_BACK request is started:

• Setup of a GET Http request using the url_index as specified in the SiteIni.

• If a valid response is received, a ’special’ build-in scrub procedure (see below) is started to extract the required data to

compose the required Postdata.

50

• The program then issues the next Http request using method POST with this postdata and the same url_index as in

step 1. (So, in fact it grabs this first page twice, once to extract the postdata and a second time as part of the regular

grabbing).

• Any following request is done using the POST method as described above.

• Prior to designing the SiteIni entries, determine the necessary headers and postdata in the way described in 5.1.1.

Match the postdata content with data found on the html page in response of the GET request. Tip: Locate the data that

contains the string VIEWSTATE or TOKEN. Also Locate the possible variables and their format like channel , urldate and

subpage. These variables must be added to the postdata header specification and not to the elements specified in the

‘special scrub procedure’. (This procedure is only executed once, immediately after the first GET response, so will not be

evaluated after the following POST responses if specified there)

• The ‘special’ scrub procedure as mentioned in 2. must be specified in the SiteIni using these rules:

• Use scope=urlindex e.g. within scope.range {(urlindex)|end} and end_scope

• Only the elements any of the global and the 9 available index_temp_1 to 9 are allowed.

• In most cases the second url is different from that of the first. Use an operation , e.g. set to modify the url of the first :

url_index.modify {set|url of the second request}

• At the end of the procedure, the extracted data required for the following POST request must be placed in the element

index_variable_element.

• two header specifications are required as a minimum:

url_index.headers {method=POST_BACK} to initiate this method and activate the special scrub

url_index.headers {postdata= —- the required postdata —- }

An example:

• url_index with the channel variable as discovered in the variable part of the postdata:

url_index{url()|http://etfarag.com/Programs/ChannelDisplay.aspx?ChannelID=|channel}

• the required urldate format:

urldate.format {datestring|dd"%2F"MM"%2F"yyyy}

• the headers:

url_index.headers {method=POST_BACK}

url_index.headers {accept=application/x-ms-application, image/jpeg, application/xaml+xml, image/gif, image/pjpeg,

application/x-ms-xbap, */*}

• the postdata containing the index_variable_element containing the data scrubbed from the GET response, added to it a

variable part containing urldate:

url_index.headers

{postdata=__EVENTTARGET=ctl00%24MainContent%24ChannelDisplay2%24txtDate%24txtDate&__EVENTARGUMENT

=&__LASTFOCUS=&__VIEWSTATE='index_variable_element'&ctl00%24Login1%24txtUserName=&ctl00%24Login1%2

4txtPassword=&ctl00%24Timezone1%24drpTimezone=60&ctl00%24Search1%24txtSearch=&ctl00%24MainContent%2

4ChannelDisplay2%24drpChannls='channel'&ctl00%24MainContent%24ChannelDisplay2%24txtDate%24txtDate='urldat

e'&ctl00%24MainContent%24ChannelDisplay2%24txtDateDown%24txtDate='urldate'&ctl00%24Register1%24txtName

=&ctl00%24Register1%24txtPass=&ctl00%24Register1%24txtRePass=&ctl00%24Register1%24txtEmail=&ctl00%24Re

gister1%24dtCtlBirthDate%24txtDate=&ctl00%24Register1%24ddlTimezone=-

1&ctl00%24Register1%24txtMobile=&ctl00%24Register1%24ddlCountries=-1&ctl00%24Register1%24ddlLanguages=-

1}

• The special scrub procedure to extract the post_back postdata:

scope.range {(postback)|end}

Note: This procedure has its own scope, postback !

scrub the VIEWSTATE content:

index_variable_element.scrub {single|id="__VIEWSTATE"|value="|" />|" />}

In most cases the following control chars must be entered by their html char code in the VIEWSTATE value (this could

be site specific):

index_variable_element.modify {replace|+|%2B}

index_variable_element.modify {replace|/|%2F}

index_variable_element.modify {replace|$|%24}

index_variable_element.modify {replace|\||%7C}

end_scope

5.1.3 How to configure a SiteIni file for a site using the SOAP http protocol
• First : read 4.4.1.1 Although, like the POST and the POST_BACK method, SOAP also uses request data to be send to the

server. This method uses a XML file ‘SOAPENVELOPE’ which is automatically generated by the program after being filled

with the content of the postdata header from the SiteIni.

51

• Unfortunately, the content of this data cannot be figured out with the tools used for the POST and the POST_BACK

method (see 5.1.1 and 5.1.2). Instead a dedicated ‘sourceforge’ program ‘soapui’ can be used to configure a SOAP

request. (https://www.soapui.org/downloads/soapui/source-forge.html) An example (Dutch!)of the use of this program

is can be read in Example-Use-Of-SoapUi.pdf available

@ http://www.webgrabplus.com/sites/default/files/download/documentation/Set%20of%20help%20files/help-files.zip

With the data collected that way, the SiteIni can be constructed. As example, the following lines from schedulesdirect.org.ini:

url_index {url|http://webservices.schedulesdirect.tmsdatadirect.com/schedulesdirect/tvlistings/xtvdService}

url_index.headers {methode=SOAP}

* The headers, notice the username and password as required by this site

url_index.headers {customheader=SOAPAction=urn:TMSWebServices:xtvdWebService#download}

url_index.headers {customheader=Accept-Encoding=gzip,deflate}

url_index.headers {credentials=ENTER_USERNAME,ENTER_PASSWORD}

url_index.headers {accept=text/xml|contenttype=text/xml;charset="utf-8"}

url_index.headers {postdata='index_variable_element'}

scope.range {(urlindex)|end}

*

* timespan calculation to enable to add the requested timespan from the config

* add 1 day because config_timespan_days is 0 based:

index_variable_element.modify {calculate(format=F1)|'config_timespan_days' 1 +}

index_variable_element.modify {calculate(format=timespan,hours)} * convert to the proper timespan string required for the date

calculation in index_temp_2

**

index_temp_1.modify {calculate(format=date,yyyy-MM-dd)|'urldate'}

index_temp_2.modify {calculate(format=date,yyyy-MM-dd)|'urldate' 'index_variable_element' +}

index_variable_element.modify {clear} * clear the timespan value

index_variable_element.modify {addstart()|<SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><SOAP-

ENV:Body><m:download xmlns:m="urn:TMSWebServices" SOAP-

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"><startTime

xsi:type="xsd:dateTime">'index_temp_1'T00:00:00Z</startTime><endTime

xsi:type="xsd:dateTime">'index_temp_2'T00:00:00Z</endTime></m:download></SOAP-ENV:Body></SOAP-ENV:Envelope>}

end_scope

5.1.4 How to configure a SiteIni file for a site using the MULTIPART Http protocol
A variant of POST request is the MULTIPART. An HTTP MULTIPART request is an HTTP request that HTTP clients construct

to send files and other data over to an HTTP Server. These data ‘parts’ are separated by ‘boundaries’ that enable the

receiving server to recognise the individual parts. For tvguide data it is quite rare. The data parts must be entered in the

postdata header in the format name=value, each of them separated by the standard element separator \|. The

MULTIPART API build into the program, which will be activated with header method=MULTIPART , will replace these

separators by randomly created ‘boundaries’.

Example of a MULTIPART payload that will be send to the server:

------WebKitFormBoundaryAPHWNkcBAq3Sap5W

Content-Disposition: form-data; name="station"

69

------WebKitFormBoundaryAPHWNkcBAq3Sap5W

Content-Disposition: form-data; name="previousStationsId"

4

------WebKitFormBoundaryAPHWNkcBAq3Sap5W

Content-Disposition: form-data; name="_do"

stationSelectForm-4-submit

------WebKitFormBoundaryAPHWNkcBAq3Sap5W—

Following the case above we can compose the postdata as follows :

In this example a global_temp element is used to construct the postdata value for convenience.

We also specify method=MULTIPART in the url_index_headers. The various components of the multipart data are specified

https://www.soapui.org/downloads/soapui/source-forge.html
http://www.webgrabplus.com/sites/default/files/download/documentation/Set%20of%20help%20files/help-files.zip

52

as name=value and are separated by the standard element separator \|

Example:

scope.range {(urlindex)|end}

urldate.format {daycounter|0}

url_index {url|https://our_site_url}

url_index.headers {method=MULTIPART}

url_index.headers {customheader=Accept-Encoding=gzip,deflate}

global_temp_1.modify {set|station='channel'\|previousStationsId=4\|_do=stationSelectForm-4-submit}

url_index.headers {postdata='global_temp_1'}

end_scope

Please note that some fields may not need to be specified, depending on site requirements.

5.1.5 Using patterns
Argument pattern is different from the other arguments mentioned in (4.6 Operations) and (4.2.5 Arguments) . They are

the only arguments that can be used both in scrubs and in modify operations . On the other hand they are limited to certain

elements , the time elements start and stop for a (date-time) pattern and the episode element for a (episode-number)

pattern. In fact, they perform an operation, even when used in a scrub. It tries to match the input data with the value of

the pattern and if the match is succesful it converts the data to a certain format.

Note that this 'operation' is done on the data that is the result of the scrub or the modify operation, using all the specified

arguments except!! the pattern argument! The operation for pattern argument is performed as last !!.

As mentioned above, the pattern argument comes in two forms :

5.1.5.1 Date-time patterns

See also (4.5.2.1 Time elements) and (pattern argument)

These only work for the elements start and stop, combined with any of the possible prefixes.

The value of 'pattern' must be enclosed by " " and follows the notations of the custom date and time format strings

https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx or the standard date and time format strings

https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx

The converted date-time output value follows the format that is custom for the cultureinfo value as in (4.3 General Site

dependent data)

Examples:

- Suppose a very simple index show value of :

showtitle,20170109T06:00#3:50 (in which the underlined part is the datetime string)

and cultureinfo=en-US

- Get the start time with a scrub and a pattern:

index_start.scrub {regex(pattern="yyyyMMddTHH:mm")||,(.+?)#||}

result :1/9/2017 6:00 AM

- Get the start time with a modify command:

try another cultureinfo=nl-NL

index_temp_1.scrub {regex||,(.+?)#||} * returns 20170109T06:00

index_start.modify {set(pattern="yyyyMMddTHH:mm")|'index_temp_1'}

result : 9-1-2017 06:00

This last example illustrates that the 'pattern' operation is executed at the end. Command set is performed first and

results in a value of 20170109T06:00 , next the pattern operation recognizes the data as a match and converts it.

One would be inclined to use (4.6.4.5.3 Date and time calculations) together with pattern but that is tricky because

the calculation command does its own converting and formatting, so it will only work if the calculate result is such

that it can match the pattern value, in that case it is probably not necessary to use a pattern anymore.

5.1.5.2 Episode-number patterns

See also pattern and episode_element

The pattern argument used in scrubs or a modify operation of the episode element (any possible prefix) enables to

recognize and convert custom episode number values into one of two possible standards: xmltv_ns (see xmltv.dtd) or a

simple 'onscreen' format. The use of an episode number standard is required for most PVR xmltv import utilities. The

favourite episode number standard for this purpose is xmltv_ns. This is also important if the MDB postprocessor and is used

to extract series data with episode-number as identification of the series. (see 6.4 Series episode details)

https://msdn.microsoft.com/en-us/library/8kb3ddd4(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/az4se3k1(v=vs.110).aspx
http://xml.coverpages.org/XMLTV-DTD-20021210.html

53

With the help of the 'pattern' argument most custom episode number formats can be converted into one of these

standards. Which of the two is determined by the episodesystem value as in (4.3 General Site dependent data)

• The 'onscreen' format used by the program as output of the conversion:

[Sn[/St]]En[Et][Pn[/Pt]]

S season, Sn season number , St total number of seasons

E episode, En episode number, Et total number of episodes

P part, Pn part number, Pt total number of parts

[] is optional

Spaces between S E and P allowed

• Examples :

S2/4 E12/20 P1/2 (season 2 of 4 episode 12 of 20 part 1 of 2)

or without the 'totals' :

S2 E12 P1

just the episode:

E12 or with total E12/24

season and episode, no space:

S2E12

• The pattern specification

the pattern value must be composed of the following elements:

o strings , like Season or Temporada or Aflevering or Folge , whatever strings or characters accompany the numbers.

o One or more of the following standard expressions to indicate the meaning of the numbers (including the ' '):

▪ 'S0' or 'S1' the season number, 'S0' for zero based numbers (first season is season 0) 'S1' for one based numbers

▪ 'St0' or 'St1' the total number of seasons (if present)

▪ 'E0' or 'E1' and eventual 'Et0' or 'Et1' for the episode number

▪ 'P0' or 'P1' and eventual 'Pt0' or 'Pt1' for the part number

▪ * patterns are case insensitive

* multiple patterns can be specified if a site uses various mixed formats. The program automatically selects the

one that gives the best matching. Each pattern must be enclosed by " ".

• The number format of episode numbers is D by default . It can be set adding format=”D1” or “D2” in the episode

pattern specification. This number format can be overruled by the episodenumberformat in 4.3 General Site dependent

data

Examples :

Input value: Season 5, Episode 12 pattern : "Season'S1',Epsode'E1'" (for one based numbers)

or : Ep12/24 of Sn3 pattern : "Ep'E0'/'Et1'ofSn'S0'" (partly zero based)

or : Season 3 of 4, Episode 3 of 12 pattern : "Season'S1'of'St1',Episode'E1'of'Et1'"

Lets try the last one:

- Suppose a very simple index show value of :

showtitle,20170109T06:00#3:50&Season 3 of 4, Episode 3 of 12 (the underlined part is the episode number)

and episodesystem=onscreen

- Get the episode element with a scrub and a pattern:

index_episode.scrub {regex(pattern="Season'S1'of'St1',Episode'E1'of'Et1'")||&(.+)\z||}

result : S3/4 E3/12

- Get the episode element with a modify command:

and try the another episodesystem=xmltv_ns

index_temp_1.scrub {regex||&(.+)\z||} * returns: Season 3 of 4, Episode 3 of 12

index_episode.modify {set(pattern="Season'S1'of'St1',Episode'E1'of'Et1'")|'index_temp_1'}

result : 2/4.2/12.

Often in one site or even channel, parts of the episode number are missing or different from others. In such cases a second

(or third etc) pattern can be added.

Example :

Suppose the next index show of the same channel as the one above is like:

showtitle,20170109T09:50#2:00&Episode 4, Part 2

for this we can specify a second pattern:

index_episode.scrub {regex(pattern="Season'S1'of'St1',Episode'E1'of'Et1'""Episode'E1',Part'p1'")||&(.+)\z||}

result (xmltv_ns) : .3.1

result (onscreen) : E4 P2

The result for the first show remain as above. The program uses the pattern that matches the input value best!

54

5.1.6 Adding xmltv attributes
As explained in 4.5.5 XMLTV attributes xmltv attributes can/will be added in two ways: Through site depedent parameters

(default) and/or through the method described in this chapter. (plus the use of a lang attribute argument as a special case

for titleoriginal) See table_4

This method will overrule the attribute values set through the 4.3 General Site dependent data!

This must be done by adding the following attribute reference string(s) to the value of the element for which the attribute

needs to be added:

elementvalue(attributename=attributevalue) or

elementvalue(attribute1name=attribute1value)..(attributenname=attributenvalue)

- Elementvalue and attributevalue can be given as 'element', e.g. 'temp_1'

- The second syntax with more than one attributes can be used to add several attributes. E.g. in the case of the elements

like showicon for the attributes height and width .

- The attributename must be the correct attribute name that belongs to the element (as listed in xmltv.dtd and 5.1.5.4

Overview of supported xmltv attributes

- If the attributename is correct, the program will recognise the attribute reference string , create the attibute and

remove the attribute reference string from the element value.

5.1.6.1 The role attribute of the actor xmltv element

Example A. A simple one.:

Suppose the actors and their role are listed like this in the showdetail page:

Kenneth Branagh (Kurt Wallander)

Richard McCabe

Sarah Smart (Anne-Britt Hoglund)

The actor element has these values through prior scrub actions. The following scrubstring will replace (Kurt Wallander) in

(role=Kurt Wallander) , and likewise for the other actor values for which a role is specified, following the syntax of the role

attribute for the above given reference string:

actor.modify {replace(type=regex)|"(\s\().+?\)\z"| (role=}

The program will recognise this reference string as being a valid attribute name and value for the actor xmltv element.

The resulting xmltv listing will be:

<actor role="Kurt Walander">Kenneth Branah</actor>

<actor>Richard McCabe</actor> * missing role attribute

<actor role="Anne-Britt Hoglund">Sarah Smart</actor>

Example B. A more complicated example:

Suppose the role values are listed as:

Kurt Wallander played by Kenneth Branagh

Richard McCabe

Anne-Britt Hoglund played by Sarah Smart

Use the following to convert the actor value to include the role reference string:

temp_9.modify {set|'actor'} * copy the actor value in temp_9

actor.modify {clear}

loop {(each "temp_1" in 'temp_9'} max=10)|end}

temp_2.modify {substring(type=regex)|'temp_1' "(\A.+?)\splayed\sby"} * get rolevalue

temp_2.modify {set()|(role='temp_2')} * add attribute syntax to temp_2

temp_1.modify {remove(type=regex)|"(\A.+?\splayed\sby\s)"} *remove role part

actor.modify {set()|'actor''temp_1''temp_2'\|} * compose actor inc role

end_loop

The resulting xmltv listing will be the same as in A.:

<actor role="Kurt Walander">Kenneth Branah</actor>

<actor>Richard McCabe</actor> * missing role attribute

<actor role="Anne-Britt Hoglund">Sarah Smart</actor>

55

C. Others: actor value and role value come in numerous string combinations. With the use of a set of siteini commands it

must be possible to achieve the required actorvalue(role=rolevalue) format.

5.1.6.2 The lang attribute.

xmltv.dtd describes this attribute as follows:

Many of the details have a 'lang' attribute so that you can store them in multiple languages or have mixed languages in a

single listing. This 'lang' should be the two-letter code such as 'en' or 'fr_FR'. Or you can just leave it out and let your

reader take a guess.

Upto version 2.1.1, the program used the language component of the general site depedent Cultureinfo as a value for this.

No need to specify it in the element value with the attribute reference string.

From V2.1.1 onwards it is possible to add a lang attribute reference string to the element value. E.g. if an element value is

given in another language than that of the Cultureinfo, either as an additional element value in that language or just with

the correct lang attribute.

For every different lang attribute value of an element an additional xmltv element will be created.

A. General method, suppose:

cultureinfo=de-DE (or langoverrule=de)

a show has two subtitles:

In German : Das Haus in den Bergen.

And in Czech: Chata v horách.

Using regular grabbing the subtitle element gets the German value and we grab the Czech in temp_1. In order to get the

Czech subtitle listed as separate <sub-title> we must add the attribute reference to the value, Chata v horách.(lang=cs),

and add this as element to the subtitle element . For this addition, command addend or set can be used.

As example with set:

subtitle.modify {set|'subtitle'\|'temp_1'(lang=cs)}

Or with addend:

subtitle.modify {addend|\|'temp_1'(lang=cs)}

The resulting xmltv listing:

<sub-title lang="de">Das Haus in den Bergen.</sub-title>

<sub-title lang="cs">Chata v horách.</sub-title>

Note:

- The use of the standard element separator | (escaped here \| to avoid being interpreted with control char |)

- the German subtitle doesn't need the (lang=de) addition because it’s the default value set by the cultureinfo or the

langoverrule value. But it won't harm if added as such.

B. Title.

The method described above can also be used for title. But there are a few things to keep in mind for this xmltv element.

- title is used in the incremental update mode decision making. (see 2.1 The Show update process). Therefor it is preferable

to use the same lang attribute (and thus the same title value) for index_title and (detail_)title.

- titleoriginal : This is the only element that has the option to specify a lang attribute as argument. (see 4.5.2.2) and creates

a second title element in the xmltv file similar to the methods described in this chapter with the use of an attribute

reference string.

In fact, these methods create an alternative for the titleoriginal siteini element. Both the use of titleoriginal or the creation

of a xmltv title element with the 'original title' value by means of the addtion of the lang attribute reference string are

supported. (And will result in the same xmltv title elements)

C. Effect of the lang attribute on xmltv elements (multi or single xmltv elements)

see 1.3 Xmltv, Single - versus multiple - value xmltv elements

5.1.6.3 The episode system attribute.

This attribute will get the value of the site dependent parameter episodesytem if not overruled by the addition of the system

attribute reference string to the episode value. In case of this episode element, the attribute value also starts a conversion

of the value to the format determent by the system attribute value.

Suppose a index_show value like :

http://xml.coverpages.org/XMLTV-DTD-20021210.html

56

één,one,,06:30-10:25*Season 12 Episode 3/10_

and assume episodesystem=onscreen

We can scrub the index_episode with:

index_episode.scrub {regex(pattern="Season'S1' Episode'E1'/'Et1'")||*(.+?)_||}

* note: the use of the pattern argument, see 5.1.5.2 Episode-number patterns for details about that.

The following will result in two xmltv episode-num elements each with the required system attribute and the corresponding

value:

index_episode.modify {set|'index_episode'\|'index_episode'(system=xmltv_ns)}

result:

<episode-num system="onscreen">S12 E3/10</episode-num>

<episode-num system="xmltv_ns">11.2/10.</episode-num>

* note: If the program is unable to perform the conversion because it cannot recognize the input value , the system

attribute value "onscreen" will be issued.

5.1.6.4 Adding more than one attribute to an xmltv element

Example, start and channel attribute of xmltv element previously-shown :

Suppose temp_1 value is 05/07/2012 and config_site_channel is FOX HD

previousshown.modify {addend|(start=’temp_1’)(channel=’config_site_channel’)}

wil result in:

<previously-shown start=”05/07/2012” channel=”FOX HD”/>

5.1.6.5 Overview of supported xmltv attributes

TABLE 4

 supported through:

XMLTV

attribute

name:

support for

xmltv

elements: SiteIni name:

attribute

reference

string

site

dependent

parameter

attribute

argument details:

 APPENDIX E see 5.1.5 APPENDIX D

lang title title ✓ ✓ *

 title titleoriginal
✓ ✓ * ✓ **

** see 4.5.2.2, e.g.

lang=xx or lang=en

 sub-title subtitle ✓ ✓ *

 desc description ✓ ✓ *

 category category

✓ ✓ *

* language part of

cultureinfo or
langoverrule

 country country ✓ ✓ *

 premiere premiere ✓ ✓ *

role (credits) actor actor ✓

system (rating) value rating ✓ ✓ *
* ratingsystem

 (star-rating) value starrating ✓

 episode-num episode ✓ ✓ **

 ** episodesystem

type subtitles subtitles ✓ ✓ * * subtitlestype

src icon showicon *

* value of showicon is
xmltv attribute src

 (rating) icon ratingicon ✓

width &

height (rating) icon ratingicon
✓

 icon showicon *
✓

* value of showicon is
xmltv attribute src

start previously-shown previousshown ✓

channel previously-shown previousshown ✓

57

5.2 Tricks
• Force a show update like this: title.modify{addend(~ "NOS WK Voetbal")|(!)}

By addition of (!) (or also (?)) to the title WebGrab+Plus will update the show despite the update decision outcome.

This can be useful for shows that could have last minute changes that are not apparent from the index show times and

index title. To get this update scheduled for already existing shows in the xmltv file a one-time full update run is

necessary (set the update attribute to - f - in the channel entry of the WebGrab++.config.xml file for one run, like:

<channel update="f" site="tvgids.nl" site_id="1" xmltv_id="NED1-tvgids">NED1</channel>)

• Avoid unnecessary show update:

If the index_title is different from the title on the show detail page and a lower setting of the title match factor is

unacceptable (too low for reliable title comparison) try the following:

title.modify{replace(null)|Sterren 24|'index_title'}

The show in this example has - Sterren.nl Extra - as index_title and - Sterren 24 - as show detail title, which is too

much difference even for a title match factor of 50. With this we simply replace the title with the index_title for a show

with title - Sterren 24 - only.

• Full rating to Short rating

Sites normally list ratings like KIJKWIJZER ratings in a sentence like - Afgeraden voor kinderen jonger dan 9 jaar - of -

Let op met kinderen tot 9 jaar - of - drugs- en/of alcoholmisbruik -

The ratingicon is normally listed as a link to a picture file like - http://u.omroep.nl/gids/pics/icons/kijkwijzer/negen.png-

or - http://u.omroep.nl/gids/pics/icons/kijkwijzer/groftaalgebruik.png-

With the help of the modify operations they can be simplified easily (e.g. for site tvgids.nl):

rating.modify {replace(null)|Afgeraden voor kinderen jonger dan 6 jaar|6+}

rating.modify {replace(null)|Let op met kinderen tot 9 jaar|9+}

rating.modify {replace(null)|Afgeraden voor kinderen jonger dan 12 jaar|12+}

rating.modify {replace(null)|Niet voor personen tot 16 jaar|16+}

rating.modify {replace(null)|Grof taalgebruik|Grof}

rating.modify {replace(null)|Drugs- en/of alcoholmisbruik|Drugs}

ratingicon.modify {replace(null)|http://u.omroep.nl/gids/pics/icons/kijkwijzer/zes.png|6.png}

ratingicon.modify {replace(null)|http://u.omroep.nl/gids/pics/icons/kijkwijzer/negen.png|9.png}

ratingicon.modify {replace(null)|http://u.omroep.nl/gids/pics/icons/kijkwijzer/twaalf.png|12.png}ratingicon.modify

{replace(null)|http://u.omroep.nl/gids/pics/icons/kijkwijzer/16.png|16.png}ratingicon.modify

{replace(null)|http://u.omroep.nl/gids/pics/icons/kijkwijzer/seks.png|seks.png}ratingicon.modify

{replace(null)|http://u.omroep.nl/gids/pics/icons/kijkwijzer/eng.png|angst.png}ratingicon.modify

{replace(null)|http://u.omroep.nl/gids/pics/icons/kijkwijzer/geweld.png|geweld.png}

ratingicon.modify {replace(null)|http://u.omroep.nl/gids/pics/icons/kijkwijzer/groftaalgebruik.png|grof.png}

ratingicon.modify {replace(null)|http://u.omroep.nl/gids/pics/icons/kijkwijzer/discriminatie.png|discriminatie.png}

ratingicon.modify {replace(null)|http://u.omroep.nl/gids/pics/icons/kijkwijzer/drugs.png|drugs.png}

A set of ratingicon files for the Dutch 'KIJKWIJZER' ratingsystem with the filenames as used in this example is can be

found on internet.

• Some exclude and include tricks:

o Exclude elements with more than one word (sentence):

element.scrub {single (exclude=" ")|scrubstring}

This is very helpful to filter out (in general) one-word elements like category. A lot of sites use unsystematic html

structures. Especially secondary elements like category can be mixed with other elements like title or subtitle behind

the same separatorstrings bs es ee and bs values. This filter can help to separate them.

o Include a list of standard values:

category.scrub {single (include="film""serie""documentary""sports")|scrubstring}

Is another way to filter a category out of a mixed html scrubbed element. The list of strings to include should

contain all the possible categories present in the html scrub.

o A combination of include and exclude to further refine the result.

Consider the following scrubstring:

category.scrub {single (include="film""serie""documentary""sports" exclude=" ")|scrubstring}

The include list allows to yield an element with the value - memories of a seriekiller - , which probably is a title and

not a category. The exclude=" " removes this element value.

58

6. MDBIni file
6.1 Introduction

• The MDB postprocessor, as shortly mentioned in 3.2, allows to add additional movies or series data grabbed from online

movie and serie data-bases to the xmltv file created by the frontend WebGrab+Plus grabber. To achieve this it performs

the following steps:

• Select 'candidate' shows from the xmltv input file.

• Match the selected show 'candidates' with shows in the online MDB in two steps:

o A 'primary search' with a general search site like BING, ASK, GOOGLE or directly in the MDB site if that supports

search. This results in a number of possible show-id's for the verification step.

o For series an additional step is required: Locate the matching 'episode_id' for the 'show_id' found with 'primary

search'. This is done by iterating through a list of episodes and selecting the one that has the best match of the

'episode title' (= xmltv sub-title) and/or the 'episode number' (= xmltv episode-num)

o Verify the results of the primary search in a MDB-site, like IMDb, until a ‘match’ is found.

This is done by iterating through all 'candidates' and selecting the one that has the best match with the

'matchmovie' or 'matchserie' values (like 'title', subtitle, actor etc) in the configfile 'mdb.config.xml'.

• Grab the MDB data of the matched show or series episode from the MDB site

• Merge the grabbed MDB data with the epg data from existing xmltv file.

• Due to the flexible programmable approach, much like the frontend grabber, it is possible, in principle, to grab this

additional data from any of the existing online movie and serie data-bases 'MDB-sites' like IMDb.com, Allocine.com,

TheTVDb.com etc. This is achieved with a MDBIni file, similar to the SiteIni file of the frontend grabber, in which all the

MDB-site dependent settings and operations are specified.

• The MDB postprocessor, like the frontend grabber, uses its own configuration file, MDB.config.xml in which the user can

specify the location of relevant files, the selection and matching parameters and what, where and how to merge the

grabbed MDB data with the existing xmltv file.

(See 3.2 and http://www.webgrabplus.com/documentation/configuration-mdb/mdbconfigxml)

• Besides this config file, it uses one or more MDBIni files, optimized for different MDB_sites or for using a different

primary search-sites or optimized for movie or series data grabbing. These MDBIni files use the same scrubstring and

operations syntax as the SiteIni files with a few small exceptions and additions. Thus, all the commands and syntax

specifications described in chapter 4 are also valid for these MDBIni files besides these small exceptions and additions.

(see 6.3 Differences between MDBIni and SiteIni syntax.) It is obvious that this postprocessor has its own set of

supported elements, different from the ones of the SiteIni files. (see 6.2)

6.2 MDB Elements
Table.3 lists all the supported MDB element names and the General MDB-site dependent settings.

6.2.1 Variables in URL element values

In url_primarysearch :
- 'title' : expands to the title of the show in the xmltv source file
- 'credit' : expands to the first director or if not available the first actor of the show in the xmltv file
- 'productiondate' : expands to the prouctiondate (element <date>) of the show in the xmltv file

In url_mdb_pn :
- 'mdb_show_id' : expands to the show_id found with the primary search
- 'mdb_episode_id' : (series only) expands to the episode_id found with in the first MDB page

Examples of URL specifications in a MDBIni:

url_primarysearch {url(urlencode=1,2,3,4)|http://www.ask.com/web?&q=|imdb+|'title'|+|'credit'|&/NCR}

url_mdb_p1 {url|primary|http://www.imdb.com/title/tt|'mdb_show_id'|/}

url_mdb_p2.modify {addstart|http://www.imdb.com/title/tt'mdb_episode_id'} * the episode detail page

6.3 Differences between MDBIni and SiteIni syntax.

6.3.1 Element prefix
In SiteIni’s elements the prefix , like index_ detail_ and subdetail_ is used to specify the (html) source page from which the

element content is to be scrubbed. Not so in a MDBIni, in these, all elements that get their data from any grabbed html

MDB-site page have a standard mdb_ prefix. The html source page from which the content is to be scrubbed is specified

before the separatorstrings sequence |bs|es|ee|be} (see 4.2.1.1 The 'separator strings' method) or before the regex

specification (see 4.2.1.2 The 'regular expression' method) as follows:

http://www.webgrabplus.com/documentation/configuration-mdb/mdbconfigxml

59

Element.scrub {type(optional arguments)|page|bs|es|ee|be}

Element.scrub {regex(optional arguments)|page||regular expression||}
• page , the (html) source page from which the data content is to be scrubbed.

Possible values are :

 - primary , the primary search page.

 - p1 .. p8 , any one of the 8 possible MDB-Site grabbed pages

• bs, es, ee, be and arguments : Same as in a SiteIni , see 4.2.1.1 The 'separator strings' method

• regular expression: Same as in a SiteIni, see 4.2.1.2 The 'regular expression' method

60

Table.3

Element Name

s
o

u
rc

e
 p

a
g

e

type: action:

s
c
o

p
e

 *

Description

m
o

v
ie

s
e

ri
e

.u
rl

.h
e

a
d

e
rs

.s
c
u

b

.m
o

d
if

y

url_primarysearch ✓ ✓ ✓ ✓ ✓ ps The url of the primary search

url_mdb_p1 upto
url_mdb_p8

✓ ✓ ✓ ✓

✓ ps The url of the mdb-site data pages

subpage_mdb_p1 upto
subpage_mdb_p8 **

 ✓

 ps
Allows subpages for all source page url's p1 to p8.
Used in series type to access the season page.

mdb_show_id primary
✓ ✓

✓ ✓ ps

The show_id that the MDB-site uses as show
reference

mdb_episodetitlelist p1 - p8 ✓ ✓ ✓ m The list of episode titles for a given show_id

mdb_episodenumlist p1 - p8 ✓ ✓ ✓ m The list of episode numbers for a given show_id

mdb_episodeabsolute - ✓ ✓ ge see explanation section 6.4

mdb_episode_id p1 - p8
 ✓

✓ ✓ ge

The episode_id of a series episode that the MDB-site
uses as reference

mdb_episode p1 - p8 ✓ ✓ ✓ ✓ ge The episode number, like seaon, episode, part

mdb_title p1 - p8 ✓ ✓ ✓ ✓ m The show title as present in the MDB-site

mdb_subtitle p1 - p8
✓ ✓

✓ ✓ ge

In case of a series episode, the episode title or just a
show subtitle

mdb_description p1 - p8 ✓ ✓ ✓ ✓ ge The show description as present in the MDB-site

mdb_starrating p1 - p8 ✓ ✓ ✓ ✓ ge The MDB-site starrating

mdb_starratingvotes p1 - p8
✓ ✓

✓ ✓ ge

The number of viewer votes that contributed to the
mdb_starrating

mdb_plot p1 - p8 ✓ ✓ ✓ ✓ ge A short description of the show

mdb_commentsummery p1 - p8 ✓ ✓ ✓ ✓ ge A selection of viewers 'ono line' comment summaries

mdb_review p1 - p8 ✓ ✓ ✓ ✓ ge A selection of viewers reviews

mdb_actor p1 - p8
✓ ✓

✓ ✓ ge

A selection of actors present in the MDB-site of the
show or serie

mdb_director p1 - p8
✓ ✓

✓ ✓ ge

A selection of directors present in the MDB-site of the
show or serie

mdb_producer p1 - p8 ✓ ✓ ✓ ✓ ge A selection of the producer companies

mdb_showicon p1 - p8 ✓ ✓ ✓ ✓ ge The showicon as available in the MDB-site

mdb_category p1 - p8 ✓ ✓ ✓ ✓ ge The categories as available in the MDB-site

mdb_productiondate p1 - p8
✓ ✓

✓ ✓ ge

The year of production of the show as given by the
MDB-site

mdb_country p1 - p8 ✓ ✓ ✓ ✓ ge The (main) country where the production wat done

mdb_temp_1 upto
mdb_temp_9

any ✓ ✓

✓ ✓ any Usefull temporary elements in operations

mdb_variable_element any ✓ ✓ ✓ ✓ any The MDB variant of index_variable_element

Read-Only elements, can be used in operations and in url strings and will be expanded if enclosed by ' ' characters:

x_title expands to the title of the xmltv input file

x_subtitle expands to the sub-title of the xmltv input file

x_productiondate expands to the productiondate of the xmltv input file

x_actor expands to the first actor of the xmltv input file

x_director expands to the first director of the xmltv input file

General MDB-site dependent settings :

 optional

url The url of the 'home' page of the MDB-site e.g. IMDb.com

mdbinitype Specifies the purpose of the mdbini movie or serie

culturenfo The culture-info for the MDB-site e.g. en-UK

charset *** The charset in which the MDB-site page are coded e.g. utf-8

matchfactor A number that sets the accuracy of the string matching e.g. 80

grabengine ✓ Experimental .. Option to use an experimental grabengine wg team only

episodesystem ✓ A string that describes the value of the episode xmltv_ns or onscreen

searchsite ✓ For refence only .. The primary search site used e.g. bing

* scopes : ps = primarysearch m=match ge=getelements any=any

** subpage syntax : subpage.format{list(format=xx step=stepsize count=countnumber)|startvalue}

*** charset : If the charset in use for the primarysearch site is different from the one for the MDB site, specify both,

separated by a comma, primarysearch first.

61

6.3.3 MDBini scopes
Similar to SiteIni scopes as discussed in (4.6.1.1 and 4.6.1.2) control the effect of operations for subsequent actions of the

MDB postprocessor.

The MDB processing is done in three major steps and equally named scopes:

• scope = primarysearch (program sections GetPrimaryUrl, GetShowID and GetMdbUrls)

Select a list of show 'candidates' matching the primarysearch selection criteria 'selectmovie' or 'selectserie' in the config

file mdb.config.xml' using the primarysearch site.

• scope = match (program sections GetTitles, GetMustHaveCompare)

Find the matching MDB show or MDB series episode using the matchmovie or matchserie values in MDB.config.xml

• scope = getelements (program sections GetEpisodeID, GetOptionalCompare, GetElements)

Get all the MDB element values as requested by the MdbIni.

Similar to the use of scopes in SiteIni files, a MdbIni must be split into sections, each with its own scope. See (6.4 Series

episode details) as example.

6.4 Series episode details
(It is recommended to also read http://www.webgrabplus.com/content/mdb-postprocess-v20-beta-15625 for better

understanding)

If the source xmltv file lists series shows in which the subtitle is the episode title and/or with a unique episode number, it is

possible to obtain more episode details from an MDB-site that contains series data. (Like IMDb.com and thetvdb.com).

It must be clear that series episode details cannot be located in the MDB site by using the series title alone, a series

normally has a number of episodes, some over a period of several ‘seasons’. To locate the specific episode at least the

episode-title or the episode-number must match between xmltv input and the MDB series data. The program tries to match

the episode-title first and if that fails or is impossible because the episode-title is not present in the xmltv, it will try the

episode number.

The procedure to accomplish this is a little more complicated than the one for a movie and requires a dedicated MdbIni for

series. The objective is to get the mdb_episode_id that identifies the series episode in the MDB site. Only with that, the

episode details can be grabbed:

Example :

MDB.config.xml settings for series episode detail grabbing:

• Obviously, in mdb.config.xml, this dedicated MdbIni for series must be selected e.g.:

<site series="imdb.com.imdb_series" movies="imdb.com.imdb"></site>

• To have any chance for a xmltv show to match with an IMDb series, limit the selection to

<selectserie minumum="2" musthave="title" optional="sub-title, episode-num"/>

(or, to make things easy use <selectserie>defaults</selectserie> which is the same)

• And, also in mdb.config.xml, the subtitle and the episode number is the required as mustmatch

<matchserie optional="" mustmatch="title,sub-title,episode-num" minimum="2"></matchserie>

Set minumum to 2 or higher to ensure either sub-title and/or episode-num are forced to match!

(to make things easy use <matchserie>defaults</matchserie> which is the same)

• Optionally, if episode number matching is requested and the xmltv episode-num doesn't obey one of the standards

described below, specify episodenum_pattern:

Episode number formats in epg's vary from site to site and sometimes even within sites for different channels. Further,

also WG++ siteini's sometimes convert them to formats preferred by the user or to the xmltv_ns standard. At the other

end, even the mdb sites use various formats. The program must bring (convert) these to one standard internally, else a

matching is not possible. For the episode-num values in xmltv source file this conversion is done automatically for two

input formats: xmltv_ns and the onscreen format Sx Ey (e.g. S3 E5 = season 3 episode 5). Other onscreen formats

need a pattern specification in mdb.config.xml, e.g. :

<episodenum_pattern site="se.timefor.tv">"Season'S1'Episode'E1'"</episodenum_pattern>

- site is the site name for which the pattern is valid. This must be the site_id value.

- The episode_pattern specification is the same as for SiteIni's. See 5.1.5.2 Episode-number patterns

- multiple patterns can be specified if a site uses various formats in the xmltv source. The program automatically selects

the one that gives the best matching. Each pattern must be enclosed by " ", e.g. :

<episodenum_pattern

site="se.timefor.tv">"Season'S1'Episode'E1'""Season'S1'Episode'E1'/'Et1'"</episodenum_pattern>

- Some sites use a non standard way for the number of ‘E1’ or ‘E0’. Instead of a value relative to the season ‘S’ they use

the absolute number of the episode. E.g. Suppose in the xmltv source a value of Season 3 , Episode 31, while the

number of episodes in Season 3 is no more than 12, then most probably that 31 is the 31st episode of all the seasons

together! Obviously , matching will fail.

http://www.webgrabplus.com/content/mdb-postprocess-v20-beta-15625

62

- ‘Absolute’ Episode number : Program version 5.0.2 and above will try match above mentioned ‘non standard’ episode

values after it fails. It will do this by default if the xmltv episode number has no season component or if the ‘E’ number

is higher than the number of episodes for the specified season. If it is certain that a site uses this ‘non standard’ E

number , add the optional attribute enum=”absolute” (default value is =”relative”):

<episodenum_pattern site="tv.wp" enum="absolute">"S'S1' E'E1'""E'E1'"</episodenum_pattern>

Starting with program version 5.0.2 , this ‘absolute’ episode number is added as MDB Element ‘mdb_episodeabsolute’ in

these versions see (table_3)

MdbIni for series , guidelines:

• See (6.4.1 MdbIni for series example)

• (mdbinitype) Important value in the general site dependent settings : site {mdbinitype=series}

This will force the postprocessor into the series procedures.

• (primarysearch) Set scope = primarysearch:

• Configure an (url_primarysearch) with 'title' and scrub the (mdb_show_id) candidates (the id of the series as a whole,

not one particular episode)

• Next two options :

• - Option 1. If the mdb series site lists the episodes of the series on more than one page, e.g. one for each season:

Locate on the mdb series site a page that contains the total number of pages or seasons for series. Configure an (url)

for that page and scrub that number in a mdb_temp element e.g (mdb_temp_9) . This number will be used to

configure a (subpage) list that will be used to step through all (season) pages of the series.

• - Option 2. If the mdb series site lists all seasons and episodes on one page:

Configure an (url_mdb) for that page.

• Configure all the other (url's) that contain series episode details.

• (match) Set scope = match

• Next, scrub all the episode titles in multi value element (mdb_episodetitlelist) and the episode numbers in

(mdb_episodenumlist)

In Option 1 by stepping through the subpage list or in Option 2 from the url page that contains the series episode titles and

numbers

• The program will now automatically start a matching routine that will select the one mdb_subtitle or mdb_episode that

matches the (xmltv) values of these the best, (following the rules described in (title_or_number?) ,resulting in a single value

mdb_subtitle or mdb_episode that matches the xmltv data! No scrubstrings for these elements is necessary because they are

created by this routine.

• Scrub all episode_id’s in a from the same page (temp_element) which the (mdb_episodetitlelist) and (mdb_episodenumlist)

are scrubbed. Ensure that these three multivalue elements, (mdb_episodetitlelist), (mdb_episodenumlist) and the one

containing the episode_id’s have the corresponding series info on the same index number !!

• Scrub (mdb_title) if it is on the same html page. Or from another page.

• (getelements) Set scope = getelements

• Configure (mdb_episodeabsolute) (or in earlier versions of the program a temp_element was used) to contain the index

number of the matched mdb_subtitle (= episode title) or mdb_episode (= episode number). This is done in two steps, first by

locating the mdb_subtitle in the mdb_episodetitlelist and if that fails of the mdb_episode in the mdb_episodenumlist.

• Using this index (mdb_episodeabsolute) extract the mdb_episode_id from the (temp_element) with the list of

episode_id’s

• With this we can scrub all the remaining episode data. Because that is mostly on other html pages we need the

(mdb_episode_id) first to get the url's expanded.

• With this grab the using the urls as (rest of the elements) in scope (primarysearch)

• Because at this point it is still unclear if the series was matched trough the episodetitle (sub-title in xmltv) or a match of

the episode.num , it is necessary to extract these elements ,(mdb_subtitle) and (mdb_episode) , from the

episodetitlelist and the episodenumlist using the index element mdb_episodeabsolute .

• Finally adjust the value of the mdb_episodeabsolute to a one based number and add E

6.4.1 MdbIni for series example
The following is taken from MdbIni imdb.com.imdb_series.ini , revision 14. Header not listed .

* general site dependant data :

site {url=imdb.com|mdbinitype=serie|cultureinfo=en-GB|charset=UTF-8|matchfactor=70|searchsite=imdb}

site {episodesystem=onscreen}

scope.range {(primarysearch)|end}

* primary search ,using imdb's title search

url_primarysearch {url|https://www.imdb.com/find?q=|'title'|&s=tt&ref_=fn_al_tt_mr}

63

url_primarysearch.modify {replace()| |+}

url_primarysearch.modify {replace()|'|%27}

url_primarysearch.modify {replace()|:|%3A}

url_primarysearch.modify {replace()|https%3A|https:}

url_primarysearch.modify {replace()|;|%3B}

url_primarysearch.headers {customheader=Accept-Encoding=gzip,deflate}

mdb_show_id.scrub {regex()|primary||/tt(\d{7,8})/||}

* limit to 8 candidates .. it appeared very rare that matches are found beyond that

mdb_show_id.modify {cleanup(removeduplicates)}

mdb_show_id.modify {substring(type=element)|0 8}

* imdb url's:

* the 'home page to get the season count number

url_mdb_p1 {url()|primary|https://www.imdb.com/title/tt|mdb_show_id|/}

* get the foreign language titles

url_mdb_p2 {url()|primary|https://www.imdb.com/title/tt|mdb_show_id|/releaseinfo#akas}

* all season pages as subpages

url_mdb_p3 {url|primary|https://www.imdb.com/title/tt|mdb_show_id|/episodes?season=|subpage|}

* the episode detail page

url_mdb_p4 {url()|primary|https://www.imdb.com/title/tt|mdb_episode_id|/}

* full cast and crew (director, writer, actor)

url_mdb_p5 {url|primary|https://www.imdb.com/title/tt|mdb_episode_id|/fullcredits/?ref_=tt_ov_st_sm}

* user reviews, only from the whole series

url_mdb_p6 {url|primary|https://www.imdb.com/title/tt|mdb_show_id|/reviews}

url_mdb_p7 {url|primary|https://www.imdb.com/title/tt|mdb_show_id|/companycredits}

*

url_mdb.headers {customheader=Accept-Encoding=gzip,deflate,br}

* the subpage count value from the 'last season’ on p1

mdb_temp_9.scrub {regex()|p1||<select id=\"browse-episodes-season\" aria-label=\"(\d+?) seasons\"||}

subpage_mdb_p3.format {list(count='mdb_temp_9')|1}

end_scope

*

scope.range {(match)|end}

* imdb elements

* possible mustmatch elements

mdb_episodetitlelist.scrub {multi()|p3|||}

mdb_episodenumlist.scrub {regex(pattern="S'S1', Ep'E1'")|p3||<div>(S\d+?,\sEp\d+?)</div>||}

* this is the overall series title

mdb_title.scrub {single(separator=" - " exclude="IMDb" include=first)|p1|<head>|<title>|(|</title>}

* process titles from aka page to include country langauge

mdb_title.scrub {regex()|p2||<td class="aka-item__name">(.+?</td>\s+?<td class="aka-item__title">.+?)</td>||}

mdb_title.modify {cleanup()}

mdb_temp_8.modify {clear}

mdb_temp_8.modify {calculate(format=F0 type=element)|'mdb_title' #}

* get a title list from the aka pages

if {('mdb_temp_8' > "1")|end}

loop {(each "mdb_temp_5" in 'mdb_title')|end}

* country only :

mdb_temp_2.modify {substring(type=regex)|'mdb_temp_5' "(.+?)\s*<td class=\"aka-item__title\">"}

mdb_temp_2.modify {replace|(original title)|original title}

mdb_temp_2.modify {replace|(|- }

mdb_temp_2.modify {remove|)}

* title only :

mdb_temp_3.modify {remove(type=regex)|'mdb_temp_5' "(.+?<td class=\"aka-item__title\">)"}

mdb_temp_3.modify {addend('mdb_temp_2' not "")| ('mdb_temp_2')}

mdb_temp_4.modify {addend('mdb_temp_3' not "")|'mdb_temp_3'####}

end_loop

mdb_temp_4.modify {replace()|####|\|}

mdb_title.modify {set()|'mdb_temp_4'}

64

end_if

* list of all episode id's

mdb_temp_6.scrub {regex|p3||<a href=\"/title/tt(\d+?)/\?ref_=||}

end_scope

*

scope.range {(getelements)|end}

* index of the episode in the episodetitlelist or the episodenumlist

* in case of matched subtitle , execute only if mdb_subtitle is matched

mdb_episodeabsolute.modify {calculate(['mdb_episodetitlelist' not ""] ['mdb_subtitle' not ""] & type=element

format=F0)|'mdb_episodetitlelist' 'mdb_subtitle' @}

* in case of matched episodenum

mdb_episode.modify {cleanup(tags="<"">")}

mdb_episode.modify {replace|.| }

mdb_episode.modify {substring(type=element)|0 1}

* index of the episode in the episodenumlist :

mdb_episodeabsolute.modify {calculate(['mdb_episodenumlist' not ""] ['mdb_episode' not ""] & type=element

format=F0)|'mdb_episodenumlist' 'mdb_episode' @}

*

mdb_episode_id.modify {substring('mdb_episodeabsolute' not "" type=element)|'mdb_temp_6' 'mdb_episodeabsolute' 1}

* rest of the elements

mdb_productiondate.scrub {single()|p1|<title>||</title>|</title>}

mdb_category.scrub {multi(exclude=role=)|p1|genres&ref_=tt_ov_inf|>||}

mdb_category.modify {remove(type=regex)|"<.+?\">"}

mdb_category.modify {remove(type=regex)|"</.+?>"}

mdb_category.modify {cleanup(removeduplicates)}

* actors with role :

mdb_actor.scrub {multi()|p5|<table class="cast_list">|?ref_=ttfc_fc_cl_i||Rest of cast listed alphabetically}

mdb_actor.modify {cleanup}

mdb_actor.modify {substring(type=regex)|"/name/nm\d+?/\?ref_=ttfc_fc_cl_t\d+?\">\s*(.+?<td.+?fc_cl_t\d+?\"

>.+?)\s*<tr"}

mdb_actor.modify {replace(type=regex)|"\s*<td class.*?ttfc_fc_cl_t\d+\" >"| (role=}

mdb_actor.modify {addend()|)}

mdb_actor.modify {replace()|(as|- as}

mdb_actor.modify {replace()|))|)}

mdb_actor.modify {cleanup(tags="<"">")}

*

mdb_director.scrub {regex()|p5||Directed by.+?\s*(.+?)\r||}

mdb_temp_7.scrub {regex()|p7||>Production Companies</h4>(.+?)||}

mdb_producer.modify {substring(type=regex)|'mdb_temp_7' "ttco_co_\d+\"\s>(.+?)"}

mdb_producer.modify {cleanup()}

* other elements

mdb_starrating.scrub {regex|p4||\"worstRating\":\d,\"ratingValue\":\s*(\d\.*\d*)}||}

mdb_starratingvotes.scrub {regex()|p4||\"ratingCount\":\s*(\d*),||}

mdb_showicon.scrub {regex()|p4||\"(/title/tt\d+?/mediaviewer/rm\d+?/\?ref_=tt_ov_i)\" aria-

label=\"View\s*\{Title\}\s*Poster||}

mdb_showicon.modify {set|https://www.imdb.com'mdb_showicon'}

mdb_commentsummary.scrub {regex()|p6||class=\"title\"\s>\s(.+?)\s+?||}

mdb_commentsummary.modify {substring(type=element)|0 5}

mdb_review.scrub {regex()|p6||^.*?<div class=\"content\">\s+<div class=\"text.*?\">(.+?)<\/div>||}

mdb_review.modify {cleanup}

mdb_country.scrub {regex()|p1||country_of_origin=.+?&ref_=tt_dt_cn">(.*?)||}

mdb_plot.scrub {regex()|p4||plotText\"\:\{\"plainText\"\:\"(.*?)\",||}

mdb_plot.modify {cleanup(tags="<"">")}

mdb_description.scrub {single|p4|data-testid="storyline-plot-summary">||</div></div>|</div></div>}

mdb_description.modify {cleanup(tags="<span""")}

mdb_description.modify {cleanup(tags="<"">")}

* get the mdb_subtitle or the mdb_episode if not already matched

mdb_subtitle.modify {substring("" type=element)|'mdb_episodetitlelist' 'mdb_episodeabsolute' 1}

65

mdb_episode.modify {substring("" type=element)|'mdb_episodenumlist' 'mdb_episodeabsolute' 1}

* add 1 to episodeabsolute, the number was zero base !

mdb_episodeabsolute.modify {calculate(format=F0)|1 +}

mdb_episodeabsolute.modify {addstart|E}

end_scope

7. How to develop a new SiteIni file
7.1 Preparation

• Familiarize yourself with the basics of the SiteIni as described in chapter 4. of this document.

• To develop a new SiteIni file it is necessary to collect information about the url, the structure of the html pages of the

EPG of the site for which the SiteIni file is to be created. For that use your internet browser and familiarize yourself with

the 'developer' tools that your browser provides. E.g.:

o In Microsoft IE or Edge this tool is supplied as standard. It can be activated with F12

o For FireFox an add-on 'Firebug' must be installed

o Chrome: https://developers.google.com/web/tools/chrome-devtools/

o Other tools: Fiddler Web Debugger, …

o More information about these developer tools can be found in http://devtoolsecrets.com/

• Development environment: Install and familiarize yourself with SiteIniIDE (see 7.2)

• It helps to look at a few example SiteIni files as provided @http://www.webgrabplus.com/epg-channels

7.2 SiteIniIDE
This tool provides a dedicated development environment for SiteIni's. It can be obtained @

http://webgrabplus.com/sites/default/files/downloads/Misc/SiteIniIDE_V0.12.zip

The basics are described in a readme.txt document. Unfortunately, it is limited to Windows due to the use of NotePad++ as

editor.

Notice!! At the time of writing this version of this document, a new SiteIniIDE is in preparation that is based on the cross

platform ATOM text editor. (http://www.webgrabplus.com/content/atom-package-github) The next chapter is still written

for SiteIniIDE_V0.12 but the basics will remain the same after the release of the ATOM's base IDE.

7.3 Development steps

1. start SiteIniIDE WG++IDE.exe. It uses a third-party text editor NotePad++ which is equipped with the SiteIniIDE

language pack as described in http://www.webgrabplus.com/download/utility/notepad-syntax-highlighting that

provides coloured highlighting for a SiteIni listing.

2. Enter Alt+N to load a template for a new SiteIni. It will prompt for the name. It is essential to use a name that reflects

the basic url of the tvguide site for which you want to make the SiteIni. E.g. tvguide.com

This command will create a folder in the debug area of SiteIniIDE and will also create a SiteIni with the name you have

chosen with the .ini file extention (tvguide.com.ini) and filled the basic structure and template scrubstrings and a

WebGrab++.config.xml file.

3. Open the SiteIni file. A lot of the scrubstrings in it are disabled (* at the beginning of the line), but some are already

enabled to start with. E.g.

site {url=your_site_name|timezone=UTC+00:00|maxdays=6|cultureinfo=en-GB|charset=UTF-

8|titlematchfactor=90|nopageoverlaps}

urldate.format {daycounter|0}

url_index{url|http://www.your_site_name}

url_index.headers {customheader=Accept-Encoding=gzip,deflate} * to speed up the downloading of the index pages

index_showsplit.scrub {multi(debug)||||}

4. In your internet browser, go to the webpage that displays the tvguide of a certain channel for 'today'. Enable the

developer tool as mentioned in 7.1 Preparation and make notes of:

− URL : locate the url for the page that contains the actual tvguide data (that is not always the same as the url that

shows in the address bar of the browser!). For this url find out :

− The Webrequest method GET, POST, POST_BACK, MULTIPART or SOAP (consult 4.4.1.1)

For POST, POST_BACK and SOAP follow the special procedures described in 5.1

− The Webrequest headers (see 4.4.1.1)

− How the date is specified? Generally, especially in Webrequest method GET, it is part of the url. It can be just a

simple number or any other date string. Read 4.4.2.1 urldate format. It can also be part of the postdata header in

case of a POST or an POST_BACK Webrequest method.

http://devtoolsecrets.com/
http://www.webgrabplus.com/epg-channels
http://webgrabplus.com/sites/default/files/downloads/Misc/SiteIniIDE_V0.12.zip
http://www.webgrabplus.com/content/atom-package-github
http://www.webgrabplus.com/download/utility/notepad-syntax-highlighting

66

− Similar to date find out where and with what string the requested channel is specified.

− The URL just located is the URL of the index_page (the page that list all the shows for a certain timespan, just one

day in most cases, and for a certain channel) (But there are all kind of other index_page structures like multi page

('subpage'), multi channel, multi day, time fragmented etc)

5. Compose and enter url_index. (4.4.2 url_index and an example in 4.4.2.3)

Add the debug argument (4.2.5.5)

6. Enter urldate.format. The date format as found above in step 4. (Read 4.4.2.1)

7. (if the index_page is split into several pages, use subpage.format) (Read 4.4.2.2)

8. Add all the url_index.headers .

9. Enter a few simple values in the line that starts with site (see 4.3 General Site dependent data):

− timezone: Enter the timezone in which the data on the index_page is given. This is mostly the timezone of the

country. But sometimes the index_page is given in the UTC timezone. See 4.2.7 TimeZones

− cultureinfo: The culture info string for the country and the language

− maxdays: Figure out for how many days the site provides tvguide data.

− charset: The charset in which the index_page is written. The value is often found near the top of the index_page. If

unclear, start with utf-8. If the result of the first run looks garbled, try other values.

10. Leave index_showsplit as given in 3.: index_showsplit.scrub {multi(debug)||||}

This will simply copy the complete index_page into the element index_showsplit and because of the argument debug

also in the logfile WebGrab++.log.txt

11. Now open the config file: WebGrab++.config.xml

http://www.webgrabplus.com/download/config_files contains an example config file including an explanation of all the

values.

Locate the sample channel entry :

<channel update="f" site="your_site_name" site_id="" xmltv_id="dummy">dummy</channel>

− Check if the value for site is the name of the SiteIni (ex the .ini)

E.g as example name given in step 1 : site="tvguide.com"

− Now enter the value of site_id. This must be the channel name as found in step 4.

This site_id value will be used as the channel data mentioned in step 4

− Leave the other values as they are for now

− Save the config file.

12. Run WebGrab+Plus. To do that press Alt+W with either the config file or the SiteIni file 'open'

13. If all the settings and the SiteIni content is correct, the index_page is downloaded.

Open the log file, WebGrab++.log.txt .

Check if the url is properly created as intended. It is listed after the line: url_index created:

Correct the errors and run again if necessary.

14. Open the file named html.source.htm

That contains the response of the webrequest with the url and the headers as in the SiteIni.

If all is OK it's the index_page, else review all the settings and check any errors listed in the log file.

If the index_page is still not downloaded as expected, a cookie file might be needed. Follow the instruction as in

http://www.webgrabplus.com/documentation/configuration/cookie and try again

15. In the htlml.source.htm file, locate the index_shows. It helps to copy one of them, from start to finish and paste it in

an empty new file. You will need it again.

16. Compose the index_showsplit scrubstring. (see 4.5.1 index_showsplit) As described in 4.2.1 scrubstrings there are two

methods available to extract data from webpages: The 'separator string method' and the 'regular expression method'.

If you are familiar with regular expressions, use that method (see 4.2.1.2 and 4.2.4.3) and figure out a regular

expression that extracts each index_show individually. The scrubstring is then composed like this:

index_showsplit.scrub {regex(debug)||regular expression||}

For the alternative, the 'separator string method' four separatorstrings have to be determined:

bs – blockstart, es – element start, ee – element end and be – block end, as explained in 4.2.1.1

The scrubstring must be composed like this index_showsplit.scrub {multi(debug)|bs|es|ee|be} or any of the variants

described in 4.2.1.1

17. Run WebGrab+Plus again. Select the logfile tab (still open from step 13), you need to reload it (right click – reload).

If your scrubstring was using the 'separator string method' you will find the result of the index_showsplit after the line

[Debug] Elements , type multi applied in this log file.

If the 'regular expression method' was used you will find the result after a line like (.. is the number of matches):

[Debug] Found .. match(es):

Check if the result is as you intended. Correct if not.

http://www.webgrabplus.com/download/config_files
http://www.webgrabplus.com/documentation/configuration/cookie

67

If correct, remove the debug argument from the index_showsplit scrubstring to keep the logfile clean for the next

steps.

18. The next step is to get the start and stop times of the index shows. See 4.5.2.1 Time elements

(in rare cases the time values are not provided by the tv-guide site in the index shows, but somewhere else, e.g. in the

show detail page. The program is able to handle that but we won't discuss that here.) (4.5.2.1.1 Times from the detail

page).

You will need to compose the index_start scrubstring as a minimum. The other time elements (index_stop,

index_duration and index_date are optional)

As in step 16, both mentioned methods (as with all the following scrubstrings) can be used to compose this.

Locate the start time listing in the index shows in the index_showsplit result from step 17. In most cases it will be just

a time without a date component. Don't worry, the program will add the date automatically. Compose a scrubstring for

this start time using index_start.scrub . Add a debug argument.

If however, a date component is available, compose the scrubstring to get the whole date and time.

In most cases the program will be able to recognize the result as a date/time or time, even if the listing uses non-

standard date or time format. If a date time error occurs because this recognition fails, you can add a pattern

argument, as described in 4.5.2.1 Time elements

19. Run and check the logfile if the time element(s) are correctly scrubbed.

If correct, remove the debug argument from the time element(s) scrubstrings

20. Next is the index_title. The procedure is the same, find the regular expression or the separator strings that extract(s)

the description. Again add the debug argument to the index_title scrubstring.

21. Same as 19. Step 20 adds the last element that is needed for a Time and Title (minimal) xmltv guide. Therefore, if all

is right you will now see the shows being grabbed in the console window at the bottom of the SiteIniIde display:

innnnnnnnnnnnnnnnnnnnnnn (read the explanation in 2.1 The show update process)

22. It's time to have a look at your xmltv output file, named guide.xml by default by the SiteIniIde. (If you want another

name, change it in the config file, <filename>other path + other name </filename>)

You can also look at the result with the simple Epg viewer build into the SiteIniIde by opening the file epg.html in your

browser. Keep looking at these files during the rest of the steps.

23. Add all the other elements that are listed in the index show, the same way as in step 20 for the index_title.

E.g. index_subtitle, index_description etc.

24. Show details: Most sites list the show details on separate pages. That is the case when clicking on an index show in

your browser opens a new page with more details about that show. If that is not the case, your site has all available

details on the index page. A so called 'index_only' tvguide site. If it is such an 'index_only' site, optimize the xmltv

listing using the Operations as described in 4.6 Operations and continue with step 35 (channel list file creation + SiteIni

header)

25. In the case of show details on a separate page: Every such page has its own url and set of headers. In your browser,

with the development tool enabled as described in 7.1 Preparation, click on an index_show in the browser and find the

url, the Webrequest method and the headers in the same way as in step 4 for the index_page.

Tip: The url for such a show detail page, very often contains a kind of 'show_id', a string or a number, which you will

also find in the index_show listing. Try to match that part of the url with the same string or number in the index_show.

26. index_urlshow. Section 4.4.3 other url elements explains how to compose this. Add the debug argument.

Section 4.4.3 uses the simplest way, adding the result of a scrub action to a leadstring using this syntax:

index_urlshow {url(debug)|leadstring|bs|optional es|ee|optional be}.

If it is not possible to use this simple method, scrub the 'show_id' separately, e.g. in an index_temp element (see 4.5.3

Special elements) and compose the index_urlshow with one or more operations (see 4.6 Operations), e.g. addstart to

add strings and the scrubbed 'show_id' together.

27. Run as in step 19 and check the result of the urlshow in the logfile. If correct, remove the debug argument.

28. The next step is to get the show detail elements. For that we first try to copy one of the show detail pages into the file

html.source.htm . as follows:

− add a 'dummy' temp_1 scrub : temp_1.scrub {single(debug)||||}

This copies the whole show detail page into the temp_1 element, and also writes it into the html.source.htm file

because of the debug argument.

− In the config file, change <timespan>0</timespan> into <timespan>0 hh:mm</timespan>,

in which hh:mm is a time within the timeframe of one of the shows, enabling the special 'one show only' mode. For

this select a show with as much details as possible.

− Run again.

29. Now that you have the content of the show detail page in html.source.htm, you can add scrubstrings for all the detail

elements you want to add to your listing, starting with the title.

30. Try a few other shows by changing hh:mm in the <timespan>

68

31. Try more a full day by removing the hh:mm from the <timespan>

32. Try more days, e.g. 3, by changing <timespan>0</timespan> into <timespan>2</timespan>

33. (In rare cases some of the showdetails are on one or more subdetail page(s). See 4.4.3 and 4.4.3.1)

34. If needed, use operations to optimize, modify or clean the results. Add argument scope to optimize the SiteIni as

explained in 4.6.1.1 and 4.6.1.2

35. Next steps: Create a Channel File, a xml file that contains the correct channel data for all available channels to be used

as channel selection in the config file. As in step 4, in your browser with the development tool enabled, locate a page

from the site that contains a kind of listing of all the available channels. Part of that list must have the channel name

that you used in step 11 for the site_id, together with another name that is normally used to 'call it' and that people

are familiar with. The program uses the first as value for site_id and the latter for xmltv_id and channel name. For

example, if the site uses a channel number, like 12 to select the BBC1 channel in the URL, the site_id="12" and

xmltv_id="BBC1". The resulting <channel> element in the config for that will look as follows:

<channel update="f" site="tvguide" site_id="12" xmltv_id="BBC1">BBC1</channel>

The target for creating the Channel File is to make a list of lines as above stored in a file for all available channels. This

file, called 'site'.channels.xml, in the case of this example tvguide.com.channels.xml, will be automatically created by

the procedure in the following steps.

36. Locate the following lines at the bottom of the SiteIni :

** ##### CHANNEL FILE CREATION (only to create the xxx-channel.xml file)

**

** @auto_xml_channel_start

*index_site_channel.scrub {multi|}

*index_site_id.scrub {multi|}

*scope.range {(channellist)|end}

*index_site_id.modify {cleanup(removeduplicates=equal,100 link="index_site_channel")}

*end_scope

** @auto_xml_channel_end

This is the section that, when enabled and with the proper scrubstrings for the dedicated elements index_site_channel

and index_site_id, will create the channel file.

37. URL : The url of the page that contains the channel list data as mentioned in step 35. By default, the program uses the

url_index as already in the SiteIni (step 5.) assuming the channel data is available on the index page. (which is often

the case). If it happens to be on another page, the url for that has to be added to the block. Just specify another

url_index in the same way as in step 4 and 5. You don't have to disable the one from step 5.

38. The element index_site_channel is used to scrub the channel name and (obviously) index_site_id is for the site_id. Use

the same methods as described above to find the scrubstrings. Use the debug argument as before.

39. Enable all lines with a single * at the start of the line. The section also contains a proper scope setting and a line that

removes eventual duplicates.

40. Select just one channel in the config file and set timespan to 0 (one day) and run.

Check if the correct channel file as mentioned in step 35 is created. If correct, don't forget to disable all the lines

enabled in the previous step by adding the * at the beginning of the line.

41. SiteIni Header: Fill out the lines at the top after * @header_start

* @Site: tvguide.com

* @MinSWversion: (the program version you used to develop the SiteIni) e.g. 1.1.1/54

* @Revision 0 – [dd/MM/yyyy] your name

* - e.g. creation or update

* @Remarks: Whatever you like to mention

!! Leave the starting * characters !!

42. Save the SiteIni and run the macro WG++ Cleanup (that removes the now obsolete remaining debug arguments)

Share it with other users by posting it on the forum http://webgrabplus.com/forums/ini-files or ask for help.

 Well done!!.

APPENDIX A WebGrab+Plus Features
• Runs in Windows, Linux, OSX, Rasberry Pi and Synology NAS

• Can grab from multiple sites in one run, programmable by user through a SiteIni file.

• As of Nov 2022 SiteIni files available for 773 TV-guide sites worldwide in 98 countries

 (see http://www.webgrabplus.com/epg-channels)

http://webgrabplus.com/forums/ini-files
http://www.webgrabplus.com/epg-channels

69

• Very fast through incremental grabbing (only changed and new shows grabbed)

• Ability to import epg data from (other source) xmltv files and merge that with that of the grabbed data.

• Programmable through editing commands that enable changing, filtering, adding, moving, removing (parts) and

calculation of (parts of) the xmltv elements.

• Support of combi-channels, channels that show programs from different source channels at specific periods of the day.

• Support of time-offset channels, channels that only differ from another one through a time shift.

• Ability to grab from a very wide range of epg structures of the supported html pages. E.g. single -day, multi- day,

multi-page single-day, channel-fragmented single-day and many other variants.

• Supports grabbing from compressed feeds (gzip, deflate, br) through build-in decompression.

• Can extract xmltv elements from a very wide range of webpage data formats like html, htmls, ftp, xml, xmltv, mxf, csv ,

json and others.

• Very flexible url-builder (that builds the url of the index-page) with support for day-number, weekday-name, weekday-

number, date-string, date-number, date-lists and sub-pages.

• Support for Http and Https HtmlClient methods GET, POST, POST_BACK, SOAP and MULTIPART and the required

header specifications.

• Automatic SSL protocol client/server handshake

• Support for Http Preload url’s and autoredirect which recycles the response cookies

• Support for Ftp WebRequest, including access credentials username and password.

• Support for input of a local File in stead of a HtmlClient request for development and testing

• Support for an external custom made grabengine or

• Support of grabbing of nearly all (27) xmltv elements.

• Supports addition/modification of xmltv attributes

• Support of grabbing in all languages (that can be represented in a standard character set), including the non-alphabetic

like Chinese, Russian, Greek, Japanese etc.

• Can grab from 1, 2 or 3 web pages (index - , detail - and subdetail page)(even multiple subdetail pages)

• Automatic worldwide timezone handling and ‘forward looking’ DST (daylight saving time) adaptions .

• Integrated worldwide TimeZones database and their DST rules.

• Fair use of site resources through user programmable delays between subsequent channels, index pages and

 detail pages.

• Programmable retry and time-out settings for bad or slow internet connections.

• Conforms to the ‘ROBOTS exclusion standard’ (http://www.robotstxt.org/wc/robots.html) through a screen warning and

a user-agent signature.

• Optional MDB postprocessor that automatically grabs additional data from IMDb and other online movie and serie

databases.

• Optional REX postprocessor that allows re-allocation and merging of xmltv elements

• Postprocessor plugin allows to run any custom made executable afterwards .

• IDE available to facilitate development and update of SiteIni files

APPENDIX B Times, time-zones and DST corrections

The two time-zones:
• The first thing to realize is that there are two time-zones involved in the times in your final EPG, each with its own DST

rules; the time-zone for which the times of the guide is provided (the 'source' time-zone) and the time-zone of the user

(the 'target' time-zone). In the majority of cases these two are equal, but that doesn't change the fact that there are

two to consider.In principle, the guide times must be corrected for UTC offset and DST changes for both these two

time-zones: The first correction, the one for the 'source' time-zone, is done by WG++ and the second, for the 'target'

(should be done) by some piece of software at the viewers side, probably the PVR xmltv importer.

70

The wrong way:

• In earlier versions of WG++ (before version 1.1.1.53) the program was unable to identify the 'source' time-zone

correctly, the only info available about it was the time-zone value in the siteini. But that value was limited to just an

UTC offset, not the proper time-zone_id and the DST rules for that. (The reason for that limitation lies in the fact that

timezone_id's are not standardised among the varies computer platforms, Windows, Linux, OSX, for which WG++

should work) Therefore the DST correction that WG++ applied for the 'source' time-zone was done with the DST rules

of the 'target' time-zone. Consequently, the DST changeover dates applied for the source time-zone were the DST

changeover dates of the target time-zone. Although wrong in principle, it is only a problem if these DST changeover

dates of source and target time-zones are different, which is possible but unlikely. (no problem if the user lives in the

'source' time-zone).

• Situations when this goes wrong? Examples:

o If a user in Europe wants to use a guide from the US (they have different DST changeover dates), or any other

mismatch of DST changeover dates. Or,

o if the source time-zone has no DST rules (no DST in that zone) and the user lives in a time-zone with DST

rules. Or the opposite. Or,

o if the source time-zone is UTC (the guide times are not in any particular time-zone, just plain UTC or GMT). Any

user living in a time-zone with DST rules will run into problems because WG++ will apply the DST rules of the

viewer to the xmltv startime which was meant to be UTC without any DST rule.

• The problems explained above can be 'corrected', temporary, by either changing the time-zone value in the siteini or by

using the small utility xmltv_time_correct, (available @

http://www.webgrabplus.com/sites/default/files/download/utility/xmltv_time_correct/xmltv_time_correct.zip on the

download page) for the period of the mismatch of the DST rules.

The right way:

• To solve these problems, later versions of WG++ include an integrated international 'cross platform' time-zone

database that correctly identifies the source time-zone and the DST rule for that.

With that, WG++ doesn't use the target time-zone any more. The two above mentioned DST corrections are completely

separated, WG++ for the source, and the PVR's xmltv importer at the user end for the target.

How to interpret the times in the xmltv file created by WG++? :

• By definition, the xmltv times are in UTC (GMT)!!

• The xmltv specification allows several formats for that and WG++ uses the one with an UTC offset, format

yearmonthdayhourminutesecond +/-utcoffset or yyyyMMddhhmmss +/-hhmm. The first part of that is (in most cases)

the date and time presented in the tvguide of the source site, the second part is the actual offset of that with respect to

UTC. E.g start="20140602141500 -0500" represents a local time at the source of 2014/06/02 14:15 (or 2:15pm) in a

time-zone that is 5 hours behind (-) UTC. So, because the result is UTC by definition, this is 2014/06/02 19:15 UTC .

• The eventual DST correction for the source time-zone is done by WG++ through changing the UTC offset with the

effect that the result always remains the correct UTC source time for the start of this tv-program.

What about the start-time for the viewer in his time-zone? :

• The calculation, to be carried out by some piece of program at the viewer's side, probably the xmltv importer of the PVR

program, must simply correct for the actual local UTC offset (corrected for DST if necessary). As example, a few cases:

o Suppose the viewer is in the same time-zone as that of the source, which is quite normal. Then the start-time value of

2014/06/02 19:15 UTC will be corrected back to 2014/06/02 14:15.

o Suppose the viewer's actual UTC offset is +8:00 (Singapore or there about), then this start-time is corrected to

2014/06/03 3:15 (early morning, next day)

What if the times in your EPG appear to be wrong?

• Make sure you have the latest WG++ version that has the intergrated time-zone database.

• Check if the time-zone in the SiteInii you are using is the correct one for the epg source site.

• Check if the times in the xmltv file created by WG++ are indeed as described above (local epg source time and UTC

offset)

• Make sure your computer is set to the correct time-zone of your location, enable DST and check the time and date

setting

• Try to figure out if the xmltv importer of the PVR you are using works as described above (correct for the actual local

UTC offset). (Some importers have problems with xmltv files containing different UTC offsets, reading only the first one

found and assuming this to be the only one). In that case a small utility WG2MP can help.Some other importers use the

UTC offset in the xmltv rather than the target timezone offset, in that case there is only : the final resort, temporary

offset the guide times by using

http://www.webgrabplus.com/sites/default/files/download/utility/xmltv_time_correct/xmltv_time_correct.zip

http://www.webgrabplus.com/sites/default/files/download/utility/xmltv_time_correct/xmltv_time_correct.zip
http://www.webgrabplus.com/sites/default/files/download/utility/WG2MP/WG2MP.zip
http://www.webgrabplus.com/sites/default/files/download/utility/xmltv_time_correct/xmltv_time_correct.zip

71

--################---

APPENDIX C Read-only elements

Read-Only elements: Can be used in operation and will be expanded if enclosed by ' ' characters:

previous_start _stop _duration

previous_index_temp_1 to _9 Read-Only elements with the value of the previous scrub. (see 4.5.3)

previous_temp_1 to _9 or (=same): They can be useful in operations of other elements.

previous_detail_temp_1 to _9

previous_subdetail_temp_1 to _9

channel expands to site_id if used in url builder elements

urldate expands to the DateTime of the url_index with which the actual html page is grabbed

urldate_formatted as urldate but in the format specified in urldate.format

now expands to the date and time of the moment of expansion

showdate expands to the epg date of the actual show being processed

urlsubpage_formatted expands to the subpage.format of the actual subpage

config_site_id expands to the site_id of the channel being processed.

config_site_channel expands to the site_channel of the channel being processed.

config_xmltv_id expands to the xmltv_id of the channel being processed.

config_display_name expands to the display_name of the channel being processed.

config_timespan_days expands to timespan days of the channel being processed.

config_credentials_user expands to the credentials username of the channel being processed.

config_credentials_password expands to the credentials password of the channel being processed.

site_episodesystem expands to the episodesystem value in Site dependent data (see 4.3)

site_subtitlestype expands to the subtitlestype value in Site dependent data (see 4.3)

site_ratingsystem expands to the ratingsystem value in Site dependent data (see 4.3)

72

APPENDIX D Site Dependent settings

 General site dependent settings (see 4.3 for more details):

SiteIni name o
p

ti
o

n
al

explanation example value

url The URL of the home page of the site
timezone The timezone for which the the tvguide data is given Europe/Brussels, UTC

maxdays The maximum amount of days of epg data in the site 14

cultureinfo The culture-info string for the country of the site en-UK, fr-FR

charset The charset(s) in which the html pages are coded UTF-8 or ISO-8859-1

titlematchfactor A number that sets the quality of the title comparison 80

ratingsystem ✓ A string that describes the rating system used by the site. Kijkwijzer, MPAA

episodesystem
✓

A string that describes the value of the episode. standard values are : xmltv_ns,
onscreen

episodenumberformat
✓

Overrules the default episodenumberformat D , allowed
values D, D1 and D2

D2

grabengine
✓

Selects which internal grabengine is used (development
only)

httpclient

firstshow
✓

A number that determines which indexshow is the first to
use.

3

firstday
✓

An array of numbers that determines the first day in a
weekly multiday index page

1234560

subtitlestype
✓

Sets the value of the type attribute of the subtitles
element.

 teletext , deaf-signed

retry
✓

overrules the <retry> settings in the config file same syntax as in the config,
<retry time-out="5">4</retry>

keeptabs
✓

overrules the standard replacement by spaces of tabs in
the html pages

keeptabs

keepindexpage
✓

saves the indexpage(s) for other channels of the same
site.

keepindexpage

loadcookie
✓

sends a cookie (saved in a file by the user) as part of the
http request

 yelo.be.cookie.txt

skip
✓

overrules the <skip> settings in the config file, same syntax as in the config,
<skip>14,1</skip>

compression
✓

enables decompression of compressed site pages and
sets the decompression standard

 gzip, deflate

nopageoverlaps
✓

to indicate that the site's indexpages have no time
overlaps

nopageovelaps

allowlastdayoverflow
✓

allows shows beyond the timespan value if listed on the
index page

allowlastdayoverflow

langoverrule ✓ overrules the language component of cultureinfo langoverrule=nl

channelnameprefix
✓

(only Versions 4.2.4.6 and higher !!) Specifies a prefix
string of the xmltv_id that will be added during
channellist file creation

telekom.sk

securityprotocol

✓

Forces a specific security protocol for communication
with the server. (the program offers the choice to the
server by default) Possible values tls, tls11, tls12, tls13
and default

tls11

73

APPENDIX E Element names

prefix:

g
lo

b
a

l_

in
d

e
x

_

n
o

n
e

 o
r

d
e

ta
il

_

s
u

b
d

e
ta

il
_

.u
rl

.h
e

a
d

e
rs

.f
o

rm
a

t

.s
c
ru

b

.m
o

d
if

y

url_index - ✓ ✓ ✓ the url of the show index page

url_preload ✓ - ✓ ✓ the preload url if needed

urldate - ✓ date format for url builder

subpage ✓ - ✓
if the show index page has subpages,

format for the url builder

urlshow * ✓ - ✓ ✓ ✓
* Only if details from a showdetail html

page needs to be grabbed

urlshow_preload * ✓ ✓ ✓ ✓ ✓ * the preload for urlshow if needed

urlsubdetail * ✓ ✓ - ✓ ✓ ✓
* Only if details from a subdetail html

page needs to be grabbed

urlchannellogo ✓ ✓ src * ✓ ✓
* attribute of sub-element icon of element

channel

showsplit ✓ - ✓ ✓ ✓ splits the indexpage in shows

date ✓ ✓ start/stop * ✓ ✓
* date part of xmltv start and stop, when

not used, today is used

start ✓ ✓ start ✓ ✓

stop * ✓ ✓ stop ✓ ✓ * automatic alternative = nextstart

duration ✓ ✓ ✓ stop * ✓ ✓ * when used, stop = start + duration

title * ✓ ✓ ✓ title ✓ ✓ *
* index_title is obligatory and not multiple

scrub

titleoriginal ✓ ✓ ✓ ✓ title *
* distingueshed from title by other lang

attribute

subtitle ✓ ✓ ✓ ✓ sub-title ✓ ✓ ✓

description ✓ ✓ ✓ ✓ desc ✓ ✓ ✓

director ✓ ✓ ✓ ✓ director * ✓ ✓ ✓ ✓

actor ✓ ✓ ✓ ✓ actor * ✓ ✓ ✓ ✓

presenter ✓ ✓ ✓ ✓ presenter * ✓ ✓ ✓ ✓ * sub-elements of element credits

writer ✓ ✓ ✓ ✓ writer * ✓ ✓ ✓ ✓

producer ✓ ✓ ✓ ✓ producer * ✓ ✓ ✓ ✓

composer ✓ ✓ ✓ ✓ composer * ✓ ✓ ✓ ✓

commentator ✓ ✓ ✓ ✓ commentator * ✓ ✓ ✓ ✓

rating ✓ ✓ ✓ ✓ value * ✓ ✓ ✓ ✓ * sub-element of element rating

ratingicon ✓ ✓ ✓ ✓ icon * ✓ ✓ ✓ ✓ * sub-element of element rating

category ✓ ✓ ✓ ✓ category ✓ ✓ ✓ ✓

productiondate ✓ ✓ ✓ ✓ date * ✓ ✓ ✓ * year of production

starrating ✓ ✓ ✓ ✓ value * ✓ ✓ ✓ ✓ * sub-element of element star-rating

episode ✓ ✓ ✓ ✓ episode-num ✓ ✓ ✓

showicon ✓ ✓ ✓ ✓ src * ✓ ✓ ✓ * attribute of element icon

country ✓ ✓ ✓ ✓ country ✓ ✓ ✓

url ✓ ✓ ✓ ✓ url ✓ ✓ ✓

subtitles ✓ ✓ ✓ ✓ subtitles * ✓ ✓ ✓ * 'boolean' type elements

premiere ✓ ✓ ✓ ✓ premiere * ✓ ✓ ✓ no value, when 'true' listed like

previousshown ✓ ✓ ✓ ✓
previously-

shown *
✓ ✓ ✓ <subtitles/>

videoaspect ✓ ✓ ✓ ✓ aspect * ✓ ✓ ✓ * sub-element of video

videoquality ✓ ✓ ✓ ✓ quality * ✓ ✓ ✓

temp_1 to

temp_9
✓ ✓ ✓ ✓ ✓ - ✓ ✓

general purpose 'none xmltv' elements

(see 4.5.3)

variable_element ✓ ✓ - ✓ ✓ a variable in scrubstrings (see 4.5.3)

site_channel ✓ ✓ - ✓ ✓ ✓ to create a channel-

site_id ✓ ✓ - ✓ ✓ ✓ list file

sort_by none - ✓ ✓ required with command sort (see 4.6.4.9)

remarksSiteIni name
o

p
ti

o
n

a
l

Xmltv name

(ref

xmltv.dtd)

action:

m
u

lt
ip

le
 x

m
lt

v

m
u

lt
ip

le
 s

c
ru

b

